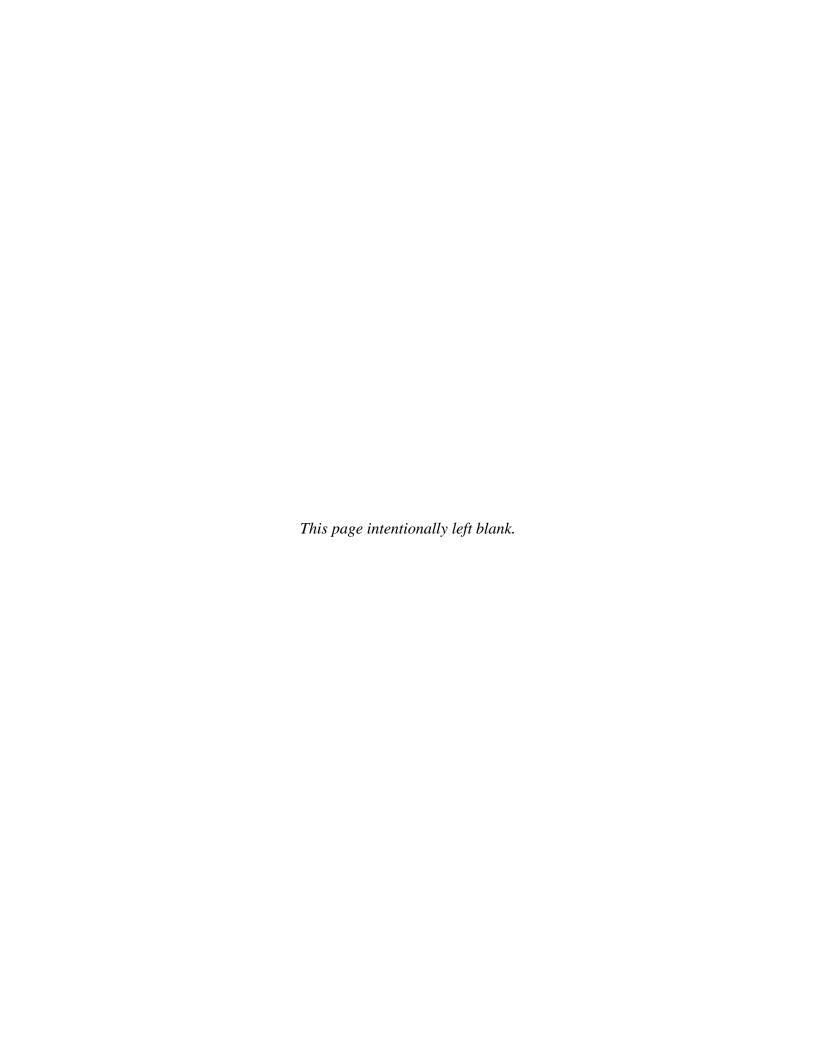
Corrective Measures Effectiveness Report January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

Prepared for:



Prepared by:

283 Rucker Street, Bldg. 3165 Anniston, Alabama 36205 (256) 847-0780 Fax (256) 847-0905

> March 2020 Revised August 2020

TABLE OF CONTENTS

LIST	OF TABLES	II
LIST	OF FIGURES	II
LIST	OF APPENDICES	II
	OF ACRONYMS	
	CUTIVE SUMMARY	
1.0	INTRODUCTION	
1.1	REPORT PURPOSE AND OBJECTIVES	
1.1	REPORT ORGANIZATION	
2.0	SITE CHARACTERIZATION	
2.1	SITE DESCRIPTION AND PHYSICAL SETTING	
2.1	LAND USE AND LAND USE CONTROLS	
2.3	SUMMARY OF PREVIOUS INVESTIGATIONS	
2.4	CORRECTIVE MEASURES	2-2
2.	.4.1 Monitored Natural Attenuation	2-2
	.4.2 March/April 2004 Baseline Sampling Event and CMIP	
2.	.4.3 Summary of Previous Monitoring Events	2-4
3.0	SUMMARY OF JANUARY 2020 MONITORING ACTIVITIES	3-1
3.1	GROUNDWATER SAMPLING	3-1
3.2	Data Quality Review	3-2
4.0	RESULTS OF JANUARY 2020 MONITORING EVENT	4-1
4.1	GROUNDWATER LEVELS	4-1
4.2	GROUNDWATER FIELD PARAMETER RESULTS	4-1
4.3	Analytical Data and Data Quality Review	
4.4	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	
	.4.1 Volatile Organic Compounds	
	.4.2 MNA Parameters	
4.5		
	.5.1 Maximum Contaminant Levels	
	.5.3 Evidence for Natural Attenuation	
5.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
	Summary of Activities	
5.1 5.2	SUMMARY OF ACTIVITIES	
5.3	CONCLUSIONS AND RECOMMENDATIONS	
	REFERENCES	6-1

LIST OF TABLES

3-1 Groundwater Samples and Parameters, January 2020 Monitoring Event 4-1 Groundwater Elevations, January 2020 Monitoring Event Horizontal Hydraulic Gradients, January 2020 Monitoring Event 4-2 4-3 Groundwater Field Parameters, January 2020 Monitoring Event 4-4 Groundwater Results for Detected VOCs and MNA Parameters, January 2020 Monitoring Event 4-5 VOC COCs and Degradation Products in Groundwater Compared to MCLs 4-6 Current and Historical Groundwater Results for MNA Parameters for Well FTA-94-**MW11**

LIST OF FIGURES

- 1-1 Site Location Map
- 1-2 Parcel Location Map
- 2-1 Site Geologic Map
- 3-1 Groundwater Monitoring Well Locations
- 4-1 Estimated Bedrock Groundwater Potentiometric Contours January 2020
- 4-2a VOC Concentrations and Groundwater Trends Well FTA-94-MW11 (Logarithmic Scale)
- 4-2b VOC Concentrations and Groundwater Trends Well FTA-94-MW11 (Linear Scale)

LIST OF APPENDICES

- Appendix A: Groundwater Levels and Sample Collection Logs
- Appendix B: Chain-of-Custody Forms Appendix C: Data Quality Summary
- Appendix D: Historical Analytical Data for Detected VOCs in Groundwater Compared to

MCLs

LIST OF ACRONYMS

ADEM Alabama Department of Environmental Management

ARBCA Alabama Risk-Based Corrective Action Guidance Manual, Revision 3

Army United States Department of the Army

cis-1,2-DCE cis-1,2-dichloroethene

CMER Corrective Measures Effectiveness Report

CMIP Final Corrective Measures Implementation Plan, Chemical Laundry and

Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

COC Constituent of concern DO Dissolved oxygen DQS Data Quality Summary

EBS Environmental Baseline Study

EPA United States Environmental Protection Agency ESE Environmental Science & Engineering, Inc.

FFS Focused Feasibility Study

ft/ft Feet per foot IT IT Corporation

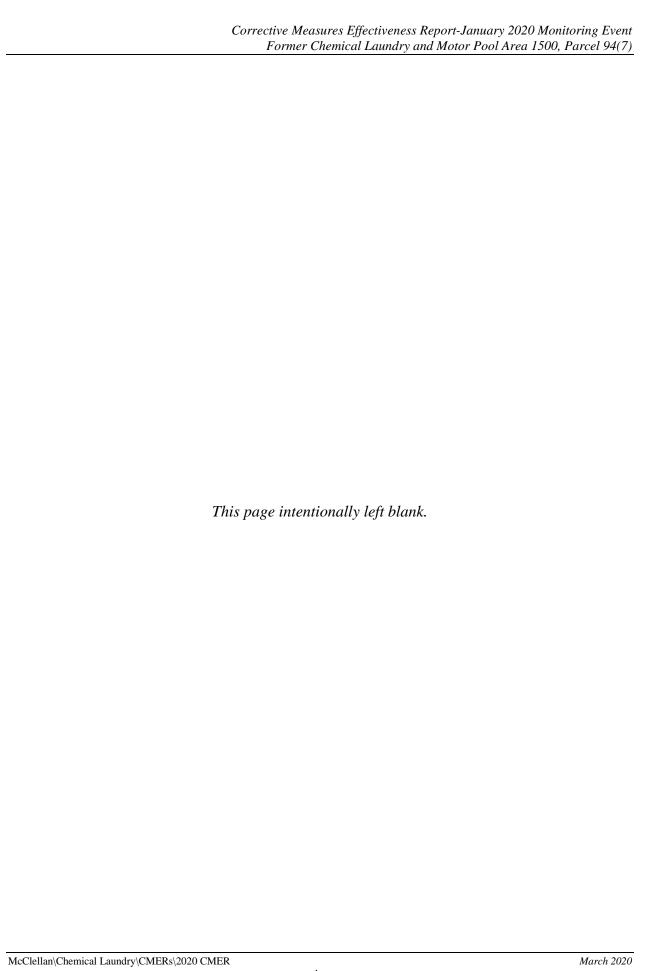
LTM Long-term monitoring
LUC Land use control
McClellan Former Fort McClellan
MCL Maximum contaminant level
MDA McClellan Development Auti

MDA McClellan Development Authority
MES Matrix Environmental Services, LLC

μg/L Micrograms per liter

MNA Monitored natural attenuation
ORP Oxidation-reduction potential
OAP Quality Assurance Plan
QA Quality assurance
OC Ouality control

RI Remedial Investigation
RSL Regional Screening Level

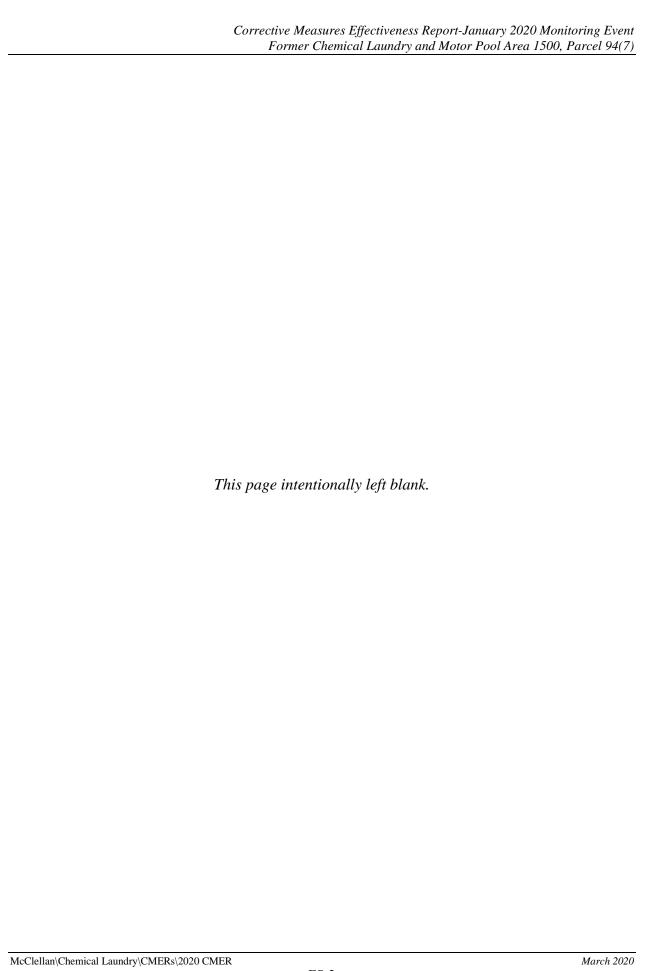

SAIC Science Applications International Corporation
SAP Final Installation-Wide Sampling and Analysis Plan

SI Site Investigation

Site Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)

TCE Trichloroethene
TDS Total dissolved s

TDS Total dissolved solids
TKN Total kjeldahl nitrogen
trans-1,2-DCE trans-1,2-dichloroethene
UST Underground storage tank
VOC Volatile organic compound



EXECUTIVE SUMMARY

The purpose of this Corrective Measures Effectiveness Report (CMER) is to document the progress of achieving the remedial objectives for contaminated groundwater at the Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) (Site), located at the former Fort McClellan (McClellan) in Anniston, Alabama, during the Long-Term Monitoring (LTM) sample event conducted in January 2020. This report was prepared by Matrix Environmental Services, LLC (MES) on behalf of the McClellan Development Authority (MDA).

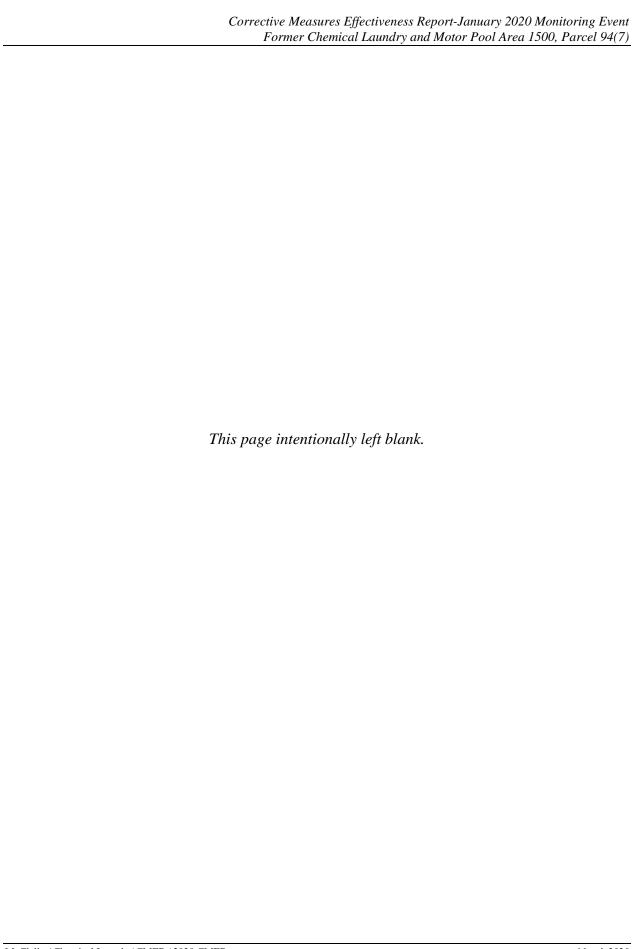
During the January 2020 groundwater monitoring event, groundwater samples were collected from one residuum well and five bedrock wells and analyzed for volatile organic compounds (VOCs). Groundwater samples from bedrock well FTA-94-MW11 were also analyzed for monitored natural attenuation (MNA) parameters light hydrocarbons, total and dissolved iron and manganese, ammonia, nitrate, nitrite, sulfate, and total kjeldahl nitrogen (TKN). The groundwater analytical results for the Site-specific constituents of concern (COCs) chlorobenzene, trichloroethene (TCE), and vinyl chloride, and TCE degradation products cis-1,2-dichloroethene (cis-1,2-DCE) and trans-1,2-dichloroethene (trans-1,2-DCE) were compared to the Maximum Contaminant Levels (MCLs).

The concentrations of COCs in bedrock monitoring well FTA-94-MW11 continue to fluctuate over time, with TCE and vinyl chloride at levels greater than the MCLs in January 2020. None of the degradation product concentrations in the bedrock monitoring wells exceeded the MCLs during the January 2020 sampling event. The presence of methane and the low concentrations of electron acceptor sulfate indicate that reducing conditions are present for biologically mediated reductive dehalogenation of chlorinated solvents. The low magnitudes of the horizontal hydraulics gradients indicate limited groundwater movement at the Site.

1.0 INTRODUCTION

The purpose of this Corrective Measures Effectiveness Report (CMER) is to document the progress of achieving the remedial action objectives for contaminated groundwater at the Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) (Site), located at the former Fort McClellan (McClellan) in Anniston, Alabama, during the Long-Term Monitoring (LTM) sample event conducted in January 2020. Figure 1-1 shows a site map of McClellan and Figure 1-2 shows a parcel location map of the Site. This report was prepared by Matrix Environmental Services, LLC (MES) on behalf of the McClellan Development Authority (MDA).

1.1 Report Purpose and Objectives


This CMER summarizes groundwater monitoring data collected at the Site during the January 2020 monitoring event, as per the *Final Corrective Measures Implementation Plan, Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama (CMIP)* (MES, 2006 [Revised 2015]). Objectives for the January 2020 monitoring event and this CMER include:

- Describe the activities performed at the Site during the January 2020 monitoring event.
- Summarize environmental sampling data from previous investigations and monitoring events and present analytical results for the January 2020 monitoring event.
- Compare the current results of the groundwater samples to historical groundwater results.
- Compare the analytical results for the constituents of concern and their degradation products to the Maximum Contaminant Levels (MCLs) to assess the progress of natural attenuation at the Site.

1.2 Report Organization

This CMER is organized as follows:

- Section 1.0 summarizes the project background, purpose of the CMER, and report organization.
- Section 2.0 presents a summary of the Site characterization, corrective measures, and previous environmental investigations and monitoring events.
- Section 3.0 describes the activities conducted during the January 2020 monitoring event.
- Section 4.0 presents the results of the January 2020 monitoring event.
- Section 5.0 presents the summary, conclusions, and recommendations.
- Section 6.0 provides the references cited in this report.
- Tables that support the CMER.
- Figures that support the CMER.
- Appendix A contains the Groundwater Levels and Sample Collection Logs.
- Appendix B contains the Chain-of-Custody Forms.
- Appendix C contains the Data Quality Summary.
- Appendix D contains the Historical Analytical Data for Detected VOCs in Groundwater Compared to MCLs.

2.0 SITE CHARACTERIZATION

This section summarizes the Site description and physical setting, land use, previous investigations conducted at the Site, and corrective measures.

2.1 Site Description and Physical Setting

The Site is located in the central area of McClellan, along Langley Avenue and south of St. Clair Road (Figure 1-2). The Site was formerly used as a vehicle maintenance facility, including three gas stations, and garment impregnation facilities. The garment impregnation facilities reportedly laundered garments to neutralize chemical warfare material (CWM). The garments were also treated to render them relatively impermeable to CWM. The impregnation plants reportedly used large volumes of toluene or ethyl alcohol, and possibly wax and "chlorinated oil". The buildings at the Site have been demolished. Two concrete slab foundations remain at the Site along with concrete sumps or grease pits. The remainder of the Site is covered with asphalt pavement.

The lithologic sequence encountered at the Site consists of an upper interval of residuum 6 to 50 feet thick overlying fractured, weathered limestone. Bedrock at the Site has been mapped as Ordovician-age Little Oak and Newala Limestones, undifferentiated, and Mississippian/Ordovician-age Floyd and Athens Shale, undifferentiated. An asymmetric anticlinal fold strikes northeast across the parcel and plunges to the southwest (Figure 2-1).

Soil at the Site has been mapped as Anniston and Allen series and the Philo series. Anniston and Allen gravelly loams consist of strongly acid, deep well-drained friable soils. Along the bank of Ingram Creek, the soil is classified as the Philo and Stendal fine sandy loams. The Philo series consist of strongly acid, moderately well-drained soil that is developing in local and general alluvium.

Groundwater flow in the residuum generally conforms to surface topography and flows predominately to the northeast towards Ingram Creek. Groundwater flow in the bedrock appears to be structurally controlled following the general trend of the underlying limestone and flowing away from the inferred location of the anticlinal fold hinge.

The history, geology, soil, and hydrogeology of the Site is described in greater detail in the *Draft Remedial Investigation Report, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94*(7) by IT Corporation (IT) (2002).

2.2 Land Use and Land Use Controls

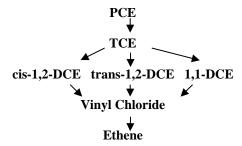
The proposed future land use for the Site is a technology and research park, as proposed in the Re-Use Plan (EDAW Inc., 1997, amended by the JPA in June 2005). Current land use controls (LUCs) at the Site include a restriction on the consumptive or other use of groundwater and direct contact with groundwater below the Site, unless proper safety and disposal measures as approved by the Alabama Department of Environmental Management (ADEM), are implemented (United States Department of the Army [Army], 2003). Environmental Covenant Number FY-12-08.00 for the Site, submitted to ADEM by the MDA in accordance with the Alabama Uniform Environmental Covenants Act, Code of Alabama §§ 35-19-1 through 35-19-

14, was filed in Probate on August 13, 2014. The covenant describes restrictions within the covenant boundary that does not include the boundary area of Parcel 94(7). The covenant boundary is located downgradient of the Parcel 94(7) boundary where concentrations of COCs were detected in groundwater.

2.3 Summary of Previous Investigations

Previous investigations conducted at the Site include:

- Environmental Baseline Study (EBS) (Environmental Science & Engineering, Inc. [ESE], 1998) and Site Investigation (SI) (Science Applications International Corporation [SAIC], 1993): An EBS was conducted to document current environmental conditions of the Fort McClellan property (ESE, 1998). Subsequently an SI was completed in 1998, which included a geophysical investigation to identify potential underground storage tanks (USTs). No USTs were found at the Site (SAIC, 1993).
- Remedial Investigation (RI) (IT, 2002): A RI was performed in two phases and chlorinated solvents were detected in groundwater collected from residuum and bedrock monitoring wells. Based on the RI sample collection, VOCs in groundwater appeared to be centered in the vicinity of residuum well FTA-94-MW01 and bedrock well FTA-94-MW11. The occurrence of vinyl chloride, cis-1,2-dichloroethene (cis-1,2-DCE), and trans-1,2-dichloroethene (trans-1,2-DCE), degradation products of trichloroethene (TCE), was generally restricted to these two monitoring wells. During the RI, TCE and vinyl chloride were identified as constituents of concern (COCs) at the Site (IT, 2002).
- Focused Feasibility Study (FFS) (IT, 2003): IT conducted a FFS based on information collected during the RI, including a streamlined human health risk assessment based on a residential exposure scenario. The FFS recommended that LUCs coupled with MNA most appropriately addressed the groundwater contamination at the Site. ADEM concurred with the recommendations of the FFS to implement LUCs and MNA to address groundwater contamination at the Site (ADEM, 2003a). ADEM also requested that one round of groundwater samples be collected and analyzed for MNA parameters before implementation of LUCs and MNA (ADEM, 2003b). Although it was not identified as a COC in the RI, chlorobenzene was included as a COC in the FFS because its maximum detected concentration in groundwater exceeded the MCL.


2.4 Corrective Measures

This section includes a brief description of MNA, the selected correctives measures for contaminated groundwater at the Site, and summarizes the previous monitoring events conducted to monitor the effectiveness of MNA at the Site.

2.4.1 Monitored Natural Attenuation

Natural attenuation refers to naturally occurring processes in groundwater that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants in media. These processes include advection, dispersion, diffusion, sorption and degradation. Insitu biodegradation of organic compounds involve the microbial transfer of electrons from electron donors (e.g., natural organic material, fuel hydrocarbons, and the less oxidized

chlorinated solvents) to electron acceptors (e.g., oxygen, nitrate, iron, manganese, sulfate, carbon dioxide, and the more oxidized chlorinated solvents) and can occur under aerobic or anaerobic conditions. Under natural conditions native organic carbon is used as an electron donor and dissolved oxygen (DO) is used first as the prime electron acceptor during aerobic respiration. After the DO is consumed, anaerobic microorganisms typically use additional electron acceptors (as available) in the following order of preference: nitrate, iron, sulfate, and carbon dioxide. Chlorinated solvent degradation largely occurs by reductive dechlorination. In general, reductive dechlorination of chlorinated ethenes occurs by sequential dechlorination as follows:

Intrinsic biodegradation results in changes in the concentrations of microbial respiratory substrates and products. The conditions existing at the site can be determined by examining changes in contaminant concentrations, changes in the concentrations of electron acceptors and products, and changes in groundwater chemistry parameters. Further details concerning the MNA process used at the Site are provided in the *CMIP* (MES, 2006 [Revised 2015]) and the *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater* (United States Environmental Protection Agency [EPA], 1998).

2.4.2 March/April 2004 Baseline Sampling Event and CMIP

One round of groundwater samples was collected during March/April 2004 to obtain additional data to support implementation of MNA as the selected remedy for contaminated groundwater at the Site. The groundwater samples collected during the March/April 2004 sampling event were analyzed for VOCs and MNA parameters including ethane, ethene, methane, iron, manganese, nitrate, nitrite, and sulfate. The results of the groundwater samples collected in March/April 2004 are presented in *Table 2-4* of the *CMIP* (MES, 2006 [Revised 2015]). The highest concentrations of VOCs were in the groundwater sample collected from residuum monitoring well FTA-94-MW01 and bedrock monitoring well FTA-94-MW11.

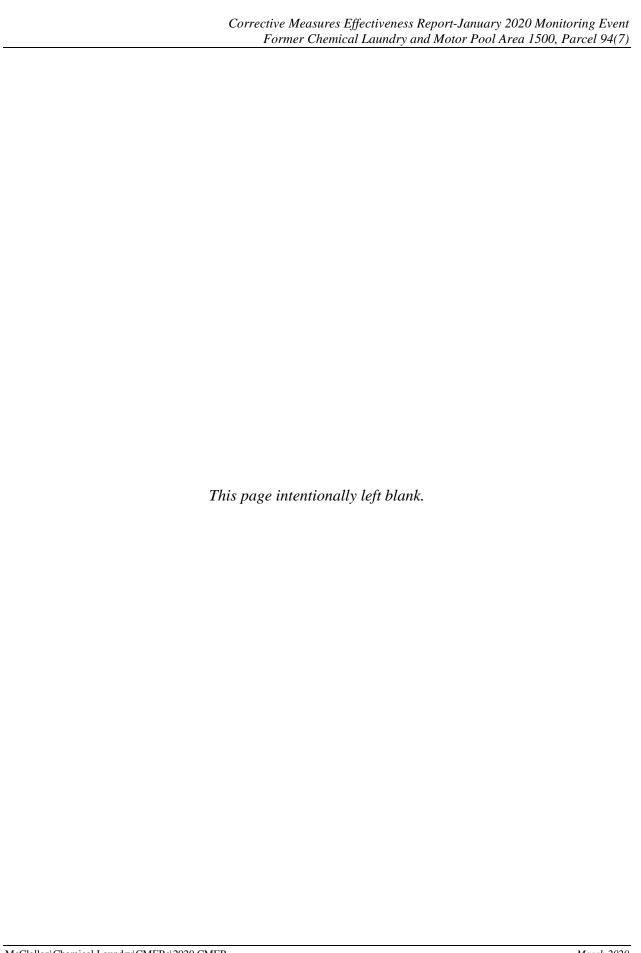
The concentrations of the MNA parameters were used to aid in identifying if conditions were favorable to successfully implement MNA. The presence of methane in the bedrock wells and low or nondetect concentrations of nitrate, nitrite, and sulfate indicated that reducing conditions were present and appropriate for biologically mediated reductive dehalogenation of chlorinated solvents. Methane was detected at a higher concentration in bedrock monitoring well FTA-94-MW14 (1,600 micrograms per liter [μ g/L]), however, because this well is located upgradient of the contaminated groundwater and groundwater at this location contained detectable concentrations of organic carbon, the higher concentration of methane was believed to be a product of fermentation of organic material.

The CMIP incorporated the findings of the previous investigations and the March/April 2004

groundwater sampling. MNA was implemented at the Site as outlined in the CMIP.

2.4.3 Summary of Previous Monitoring Events

To monitor the effectiveness of MNA at the Site, groundwater samples were collected during previous monitoring events from February 2005 to January 2019 and analyzed for VOCs and MNA parameters. The results of these monitoring events were submitted to ADEM in the following *CMERs*.


- Final (Revised) CMER, February 2005 Sampling Event (MES, 2007a)
- Final CMER, December 2005 Sampling Event (MES, 2007b)
- Final CMER, June 2006 Sampling Event (MES, 2007c)
- Final CMER, December 2006 Sampling Event (MES, 2008)
- Final CMER, June 2007 Sampling Event (MES, 2010)
- Final CMER, December 2007, June 2008, December 2008, December 2009, and December 2010 Monitoring Events (December 2007 to December 2010 CMER) (MES, 2012)
- CMER, January 2013 Monitoring Event (MES, 2013a)
- CMER, January 2014 Monitoring Event (MES, 2014)
- CMER, January 2015 Monitoring Event (January 2015 CMER) (MES, 2015a)
- CMER, January 2016 Monitoring Event (MES, 2016)
- CMER, January 2017 Monitoring Event (MES, 2017)
- CMER, January 2018 Monitoring Event (MES, 2018)
- CMER, January 2019 Monitoring Event (MES, 2019)

VOC concentrations have decreased over time in the residuum and bedrock groundwater, with the exception of bedrock monitoring well FTA-94-MW11. The concentrations for TCE and vinyl chloride in bedrock monitoring well FTA-94-MW11, which is located at the source of the contaminated groundwater, have fluctuated over time around the respective MCLs. The low concentrations of electron acceptor sulfate in groundwater at well FTA-94-MW11 indicated that reducing conditions were present for biologically mediated reductive dehalogenation of chlorinated solvents. Previous groundwater monitoring sample events have shown there is no significant migration of the groundwater contaminant plume from the source area at the Site.

Based on the results of previous groundwater monitoring events, the *December 2007 to December 2010 CMER* (MES, 2012) recommended a reduction in the number of groundwater wells and analytical parameters for future sampling rounds, as described below.

- Collect groundwater samples from residuum monitoring well FTA-94-MW03, and bedrock monitoring wells FTA-94-MW11, FTA-94-MW12, FTA-94-MW13, FTA-94-MW15, and FTA-94-MW16 annually and analyze for VOCs to continue monitoring the effectiveness of MNA and to ensure contaminant migration is not occurring at the Site.
- Analyze the groundwater sample from well FTA-94-MW11 for MNA parameters dissolved oxygen, nitrates, manganese, ferrous iron, sulfate, dissolved gases (methane, ethane, and ethane), and oxidation-reduction potential annually, to ensure conditions remain suitable for MNA.
- Collect water levels from the bedrock wells at the Site to monitor groundwater flow within the bedrock zone.

ADEM concurred with the above recommendations in their letter dated November 7, 2012 (ADEM, 2012).

3.0 SUMMARY OF JANUARY 2020 MONITORING ACTIVITIES

To meet the recommended actions outlined in the *CMIP* (MES, 2006 [Revised 2017]) and the *December 2007 to December 2010 CMER* (MES, 2012), the following activities were performed during the January 2020 monitoring event:

- Collected groundwater samples from one residuum well (FTA-94-MW03) and five bedrock wells (FTA-94-MW011 to FTA-94-MW13, FTA-94-MW15, and FTA-94-MW16) and analyzed for VOCs by Method SW8260B.
- Collected groundwater levels from the monitoring wells that were sampled (i.e., FTA-94-MW03, FTA-94-MW011 to FTA-94-MW13, FTA-94-MW15, and FTA-94-MW16), plus bedrock wells FTA-94-MW06 and FTA-94-MW14 to monitor groundwater flow in the bedrock zone.
- Collected and analyzed groundwater from bedrock well FTA-94-MW11 for MNA parameters light hydrocarbons by Method RSK-175, total and dissolved iron and manganese by Method SW6010B, ammonia by Method E350.1, total kjeldahl nitrogen (TKN) by Method E351.2, and anions (nitrate, nitrite, and sulfate) by Method SW9060.

3.1 Groundwater Sampling

Groundwater samples were collected from one residuum and five bedrock wells. Figure 3-1 shows the locations of the groundwater wells. Table 3-1 presents a summary of the groundwater sample station names, field quality control (QC) samples, and analytical parameters.

The groundwater samples were collected in accordance with methodology presented in the *Final* Installation Wide Sampling and Analysis Plan (SAP) (MES, 2013b). Before groundwater samples were collected, groundwater levels were measured to the nearest hundredth of a foot using a SolinstTM water level indicator and total well depth was measured and recorded. The groundwater samples were collected using low-flow sampling procedures, i.e., using an adjustable rate pump to remove water from the screened interval of a monitoring well at a rate that produces minimal drawdown of the groundwater in the well. Polyethylene tubing leading from the discharge side of the submersible pump was connected to a flow-through cell equipped with a YSI Model Multiprobe Water Quality Meter to measure chemical and physical parameters within the groundwater. Measurements of chemical and physical parameters were used to indicate when groundwater quality stabilized and sampling could begin. Chemical and physical field screening parameters included pH, conductivity, DO, oxidation-reduction potential (ORP), total dissolved solids (TDS), turbidity, and temperature. Groundwater levels, pumping rate, and volume of groundwater removed were also recorded. Ferrous iron was also measured in the field for bedrock well FTA-94-MW11 using a Hach Model IR-18C color disc field test kit and recorded on the sample collection logs along with the chemical and physical field screening parameters. The monitoring well sample collection logs are provided in Appendix A.

Groundwater samples were collected from the polyethylene tubing after it was identified that the field screening data had stabilized. Laboratory-supplied sample bottles were filled, labeled, placed in a chilled cooler, and shipped under chain-of-custody procedures to Eurofins TestAmerica, Savannah, Georgia. The chain-of-custody forms for the groundwater samples collected during the January 2020 sampling event are provided in Appendix B.

3.2 Data Quality Review

MES reviewed the analytical data for the groundwater samples collected during the January 2020 monitoring event. The data quality review was performed in accordance with the *Quality Assurance Plan (QAP) (Appendix A of the SAP)* (MES, 2013b) to assess compliance with the Quality Assurance (QA) objectives, and to assess hard copy and electronic deliverable consistency and integrity. The analytical data for the groundwater samples collected during the January 2020 monitoring event is provided in Tables 4-5 and 4-6. The Data Quality Summary (DQS) for the January 2020 groundwater samples is included in Appendix C.

4.0 RESULTS OF JANUARY 2020 MONITORING EVENT

This section discusses the results of the January 2020 monitoring event conducted at the Site.

4.1 Groundwater Levels

Groundwater elevations measured during the January 2020 groundwater sampling event are presented in Table 4-1. Figure 4-1 shows groundwater elevations and estimated potentiometric contour lines for the bedrock monitoring wells.

As indicated in Figure 4-1, groundwater in the bedrock flows in a northerly direction.

To further aid in assessing groundwater flow at the Site, horizontal hydraulic gradients were calculated using the groundwater data collected in January 2020, presented in Table 4-2. The horizontal hydraulic gradients in the bedrock zone were low ranging from 0.001 feet per foot (ft/ft) to 0.029 ft/ft. Site-wide horizontal hydraulic gradients averaged 0.009 ft/ft for the bedrock.

4.2 Groundwater Field Parameter Results

Measurements of field screening parameters, including pH, conductivity, DO, ORP, TDS, turbidity, and temperature, were used to indicate when groundwater quality had stabilized and sampling could begin. Ferrous iron was also measured and recorded in the field for bedrock well FTA-94-MW11. The field parameters for the groundwater samples are presented in the groundwater sampling logs in Appendix A, and summarized in Table 4-3.

4.3 Analytical Data and Data Quality Review

The analytical data for the January 2020 monitoring event is included in Tables 4-5 and 4-6. MES reviewed the analytical data in accordance with the *QAP* (MES, 2013b). The results of the data quality review for the groundwater samples collected during the January 2020 monitoring event are presented in the DQS in Appendix C. Based on the data quality review, the analytical data generated for these monitoring events are adequate to fulfill program objectives and are suitable for preparation of this report. A more detailed discussion of the analytical results can be found in the DQS (Appendix C).

4.4 Summary of Groundwater Analytical Results

During the January 2020 monitoring event, groundwater samples were collected and analyzed for VOCs and MNA parameters. This section summarizes the analytical results for the groundwater samples.

4.4.1 Volatile Organic Compounds

The analytical results for VOCs detected in the groundwater samples during the January 2020 monitoring event are presented in Table 4-4 and summarized below.

• Chlorobenzene was detected in bedrock well FTA-94-MW11 (41 μg/L).

- Cis-1,2-DCE was detected in bedrock well FTA-94-MW11 (4.4 μg/L).
- Trans-1,2-DCE was detected at an estimated concentration in bedrock well FTA-94-MW11 (1.7 µg/L).
- TCE was detected in residuum well FTA-94-MW03 (0.69 μg/L), and, bedrock well FTA-94-MW11 (54 μg/L).
- Vinyl chloride was detected in bedrock well FTA-94-MW11 (4.7 μg/L).

4.4.2 MNA Parameters

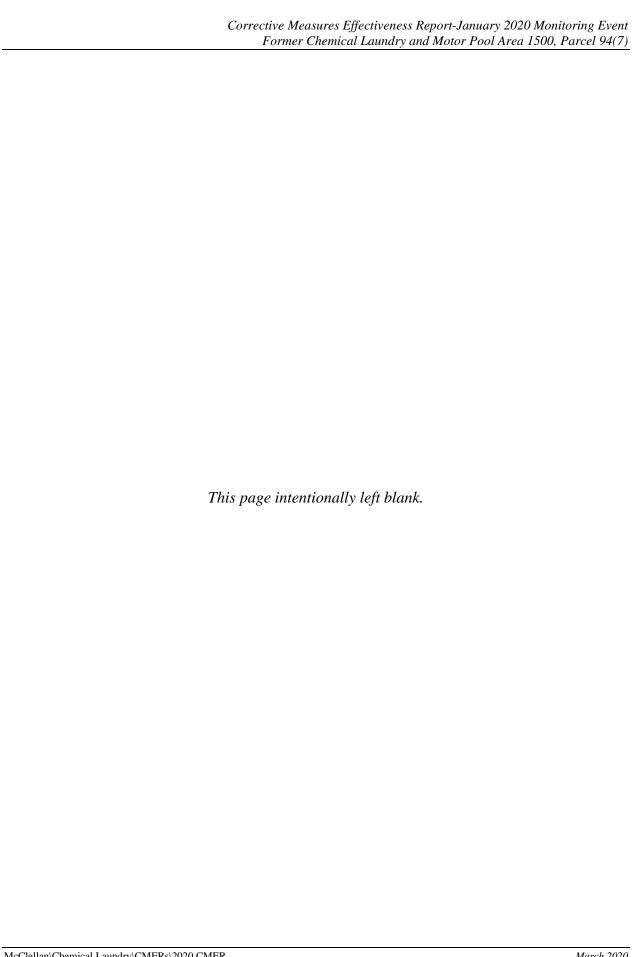
Groundwater samples collected from bedrock well FTA-94-MW11 during the January 2020 monitoring event were analyzed for the MNA parameters listed in Table 3-1. The concentrations of these constituents help to assess conditions for attenuation via biodegradation. The analytical results for the MNA parameters for bedrock well FTA-94-MW11 are presented in Table 4-4. Sulfate (7.1 μ g/L) and methane (58 μ g/L) were detected in well FTA-94-MW11. Ethane, ethene, nitrate and nitrite were either not detected or present at low concentrations. Table 4-6 presents the results for the MNA parameters in bedrock well FTA-94-MW11 from the baseline groundwater sampling event conducted in March 2004 and subsequent groundwater sampling events.

4.5 Evaluation of Remedy Effectiveness

Groundwater samples were collected at the Site to evaluate the MNA at the Site via contaminant concentration changes over time. The analytical results for the Site-specific COCs (chlorobenzene, TCE, and vinyl chloride) and for degradation products cis-1,2-DCE and trans-1,2-DCE for the groundwater samples collected in January 2020 were compared to the analytical results from the previous monitoring events and to MCLs in Table 4-5.

4.5.1 Maximum Contaminant Levels

Analytical results for Site-specific COCs chlorobenzene, TCE, and vinyl chloride and degradation products cis-1,2-DCE and trans-1,2-DCE are compared to the MCLs in Table 4-5. TCE and vinyl chloride concentrations in the bedrock monitoring well FTA-94-MW11 exceeded the MCLs during the January 2020 sampling event.


A table showing the historical detected VOCs concentrations compared to MCLs for the previous sampling rounds conducted through December 2010 is included in Appendix D. Only chlorobenzene, TCE, and vinyl chloride have historically been detected at concentrations greater than the MCLs.

4.5.2 Concentration Trends Over Time

Figure 4-2a and 4-2b show the trends in VOC concentrations and groundwater elevations over time for the Site-specific COCs and degradation products in bedrock well FTA-94-MW11. TCE slightly increased in concentration from 2018 to 2019 while the other COCs exhibited very minor fluctuations or remained the same.

4.5.3 Evidence for Natural Attenuation

The decrease in concentrations of VOCs in well FTA-94-MW11 since the March/April 2004 baseline sampling event provides evidence that MNA is occurring at the Site. The presence of methane, low concentrations of electron acceptor sulfate and dissolved oxygen, in addition to negative ORP indicate that reducing conditions are present for biologically mediated reductive dehalogenation of chlorinated solvents.

5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This section summarizes the activities and groundwater results for the January 2020 groundwater monitoring event and presents conclusions and recommendations.

5.1 Summary of Activities

Activities conducted at the Site included:

- Collected groundwater levels from one residuum well and seven bedrock wells.
- Collected groundwater samples from one residuum well and five bedrock wells and analyzed for VOCs.
- Collected and analyzed groundwater from bedrock well FTA-94-MW11 for MNA parameters light hydrocarbons, total and dissolved iron and manganese, ammonia, nitrate, nitrite, sulfate, and TKN.
- Compared analytical results to MCLs to assess the ongoing monitored natural attenuation at the Site.

5.2 Summary of Results

The following summarizes the results of the January 2020 monitoring event:

- Groundwater in the bedrock flows in a northerly direction (Figure 4-1).
- The horizontal hydraulic gradients in the bedrock zone were low, ranging from 0.001 ft/ft to 0.029 ft/ft and averaging 0.009 ft/ft Site-wide for the bedrock (Table 4-2).
- Five VOCs (chlorobenzene, cis-1,2-DCE, trans-1,2-DCE, TCE, and vinyl chloride) were detected in one or more of the January 2020 groundwater samples (Table 4-4).
- TCE slightly increased in concentration from January 2019 to January 2020; the other COCs exhibited minor fluctuations (Figure 4-2).
- TCE and vinyl chloride in well FTA-94-MW11 exceeded MCLs during the January 2020 sampling event (Table 4-5).
- The presence of methane and low concentrations of electron acceptor sulfate indicate that reducing conditions are present for biologically mediated reductive dehalogenation of chlorinated solvents.

5.3 Conclusions and Recommendations

The presence of methane, low concentrations of electron acceptor sulfate and dissolved oxygen, as well as negative ORP in groundwater at the Site indicate that conditions are still favorable for biologically-mediated MNA at the Site. The low magnitudes of the horizontal hydraulics gradients indicate limited groundwater movement at the Site. Past and present groundwater monitoring sample events have shown there is no significant migration of the groundwater contaminant plume from the source area at the Site, i.e., bedrock monitoring well FTA-94-MW11. The concentrations for COCs in bedrock monitoring well FTA-94-MW11 continue to fluctuate over time, with TCE and vinyl chloride levels greater than the MCLs in January 2020. These data have been used to estimate a range of values for a first-order point decay rate for TCE concentrations which results in a point attenuation rate between 0.029 per day (half-life of 23.9)

years) and 0.134 per day (half-life of 5.2 years.) These rates result in a range of estimated time to reach MCL concentration of 5 ppb for TCE between 8 years ago (2012) and 5 years from now (2025.) These TCE concentration data also provide evidence that there is likely contaminant present in the subsurface at an elevation that is sporadically exposed to saturated conditions and therefore only occasionally actively attenuated. This condition introduces significant uncertainty in the point attenuation rate estimates and provides an explanation for the obvious inaccuracy in the estimates. Based on this evaluation of past behavior and demonstration that developing reliable point attenuation rates is problematic it is likely that the process to restore groundwater concentrations of COCs and degradation products to below MCLs may take several decades. Based on the results of the January 2020 monitoring event, the MDA recommends continued groundwater monitoring at the Site.

6.0 REFERENCES

- Alabama Department of Environmental Management (ADEM). 2003a. Letter to Ron M. Levy, BRAC Environmental Coordinator, regarding ADEM Review and Concurrence: Draft Focused Feasibility Study (FFS) for the Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). September.
- ADEM. 2003b. Letter to Mr. Dan W. Cleckler, Executive Director, McClellan Joint Powers Authority, regarding ADEM Review and Concurrence: Request for Extension of Deadline to submit a Proposed Plan. December.
- ADEM. 2017. Alabama Risk-Based Corrective Action Guidance Manual (ARBCA), Revision. February.
- ADEM. 2011. In the Matter of: Anniston-Calhoun County Fort McClellan Development Joint Power Authority Facility, Cleanup Agreement No. AL4 210 020 562, Modification 3. June 24.
- ADEM. 2012. Letter to Robin Scott, Chief Executive Officer, McClellan Development Authority, regarding ADEM Review and Concurrence: Draft December 2007, June 2008, December 2008, December 2009, and December 2010 Monitoring Events, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). November.
- EDAW, Inc. 1997. Fort McClellan Comprehensive Reuse Plan, Implementation Strategy, prepared for the Fort McClellan Reuse and Redevelopment Authority of Alabama. November.
- Environmental Science & Engineering, Inc. (ESE). 1998. Final Environmental Baseline Survey, Fort McClellan, Alabama, prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. January.
- IT. 2002. *Draft Remedial Investigation Report, Former Chemical Laundry and Motor Pool Area* 1500, Parcel 94(7), prepared for the U.S. Department of the Army Mobile District, Corps of Engineers. May.
- IT. 2003. Focused Feasibility Study, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) prepared for the U.S. Department of the Army Mobile District, Corps of Engineers. February
- Matrix Environmental Services, LLC (MES). 2006. Final Corrective Measures Implementation Plan, Chemical Laundry and Motor Pool Area 1500, Parcel 94(7), McClellan, Anniston, Alabama. September. Revised January 2017.
- MES. 2007a. Final (Revised) Corrective Measures Effectiveness Report, February 2005 Sampling Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). April.
- MES. 2007b. Final Corrective Measures Effectiveness Report, December 2005 Sampling Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). April.

- MES. 2007c. Final Corrective Measures Effectiveness Report, June 2006 Sampling Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). April.
- MES. 2008. Final Corrective Measures Effectiveness Report, December 2006 Sampling Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). January.
- MES. 2010. Final Corrective Measures Effectiveness Report, June 2007 Sampling Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). June.
- MES. 2012. Final Corrective Measures Effectiveness Report, December 2007, June 2008, December 2008, December 2009, and December 2010 Monitoring Events, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). November.
- MES. 2013a. Corrective Measures Effectiveness Report, January 2013 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). August. Revised January 2014.
- MES. 2013b. Final Installation-Wide Sampling and Analysis Plan. December.
- MES. 2014. Corrective Measures Effectiveness Report, January 2014 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). March.
- MES. 2015a. Corrective Measures Effectiveness Report, January 2015 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). March.
- MES. 2015b, Risk Management Plan, Revision 4 Calculation of Risk Management-1 Risk-Based Target Levels to meet Alabama Risk-Based Corrective Action Guidance, McClellan, Anniston, Alabama. June 19.
- MES. 2015c, ADEM Review and Concurrence on Risk Management Plan, Revision 4 Calculation of Risk Management-1 Risk-Based Target Levels to meet Alabama Risk-Based Corrective Action Guidance, McClellan, Anniston, Alabama dated June 19, 2015. June 24.
- MES. 2016. Corrective Measures Effectiveness Report, January 2016 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). March Revised. January 2017.
- MES. 2017. Corrective Measures Effectiveness Report, January 2017 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). March Revised. January 2017.
- MES. 2018. Corrective Measures Effectiveness Report, January 2018 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). April 2018.
- MES. 2019. Corrective Measures Effectiveness Report, January 2019 Monitoring Event, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7). March 2019, revised September 2019.

Newell, C.J., H.S. Rifai, J.T. Wilson, J.A. Connor, J.J. Aziz, and M.P. Suarez. 2002. *Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies*. U.S. Environmental Protection Agency. EPA/540/S-02/500. November.

Science Applications International Corporation (SAIC). 1993. *Site Investigation Report*, prepared for U.S. Army Environmental Center, Aberdeen Proving Grounds, Maryland. August.

United States Department of the Army (Army). 2003. *Cooperative Agreement Award, Agreement No: DASW01-03-2-0001*. September.

United States Environmental Protection Agency (EPA). 1998. *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater*. *EPA/600/R-98/128*. September.

United States Environmental Protection Agency (EPA). 2020. https://www.epa.gov/risk/regional-screening-levels-rsls 03-03-2020.

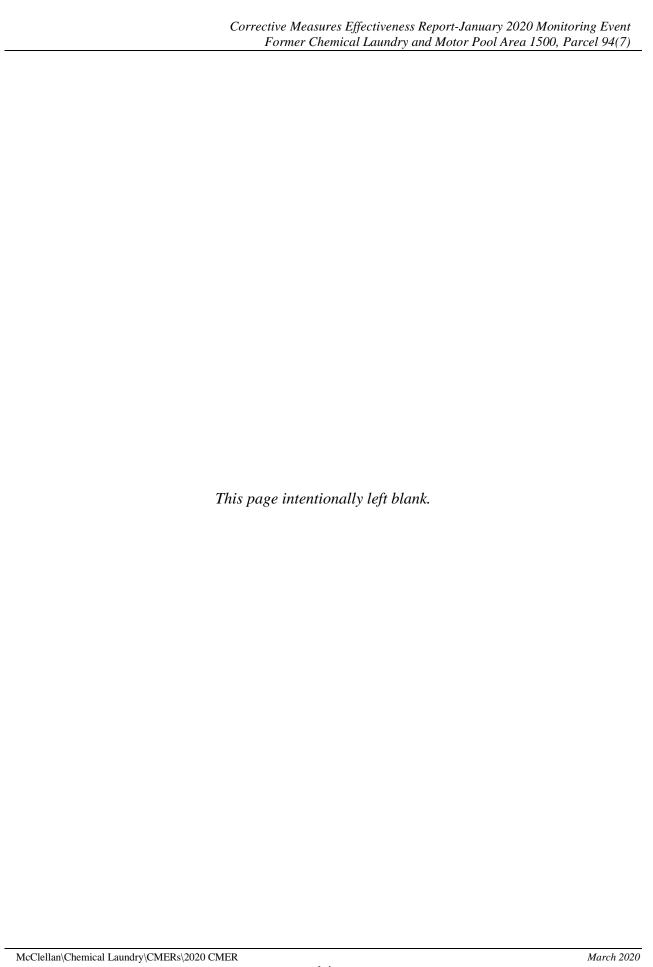


Table 3-1: Groundwater Samples and Parameters, January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)

McClellan, Anniston, Alabama

	Sample		QC							
Station Name	Date	Matrix	Code	WLs^1	E650.1	E351.2	RSK-175	SW6010B	SW8260B	SW9056
FTA-94-MW01	*	WG	NS	X						
FTA-94-MW02	*	WG	NS	X						
FTA-94-MW03	1/27/20	WG	NS	X					X	
FTA-94-MW04	*	WG	NS	X						
FTA-94-MW05	*	WG	NS	X						
FTA-94-MW06	*	WG	NS	X						
FTA-94-MW07	*	WG	NS	X						
FTA-94-MW08	*	WG	NS	X						
FTA-94-MW09	*	WG	NS	X						
FTA-94-MW10	*	WG	NS	X						
FTA-94-MW11	1/28/20	WG	NS	X	X	X	X	X	X	X
FTA-94-MW11	1/28/20	WG	FD		X	X	X	X	X	X
FTA-94-MW12	1/27/20	WG	NS	X					X	
FTA-94-MW13	1/28/20	WG	NS	X					X	
FTA-94-MW14	*	WG	NS	X						
FTA-94-MW15	1/27/20	WG	NS	X					X	
FTA-94-MW16	1/27/20	WG	NS	X					X	
TB547	1/28/20	W	TB						X	

EB = Equipment blank Method SW8260B = Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

FD = Field duplicate Monitored Natural Attenuation Parameters:

LD = Laboratory duplicate Method SE350.1 = Ammonia by spectrophotometry

MS = Matrix Spike Method E351.2 = Total Kjeldahl Nitrogen (TKN) by spectrophotometry

MSD = Matrix Spike Duplicate Method RSK-175 = Methane, Ethane, and Ethene by gas chromatography (GC)

NS = Normal Sample Method SW6010B = Total and Dissolved Iron and Manganese by Inductively Coupled

QC = Quality control Plasma-Atomic Emission Spectrometry

TB = Trip blank Method SW9056 = Anions (Sulfate, Nitrate, Nitrite) by Ion Chromatography

W = Water

WG = Groundwater WS = Source water

¹ Water Levels (WLs) were collected on 1/27/20.

^{*} No groundwater sample was collected, only WLs were collected on 1/27/20.

Table 4-1: Groundwater Elevations, January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

Well Location	Well Type	Measurement Date	Depth to Water (ft BTOC)	Ground Elevation (ft msl)	Top of Casing Elevation (ft msl)	Screen Interval (ft bgs)	Well Depth (ft BTOC)	Groundwater Elevation (ft msl)
FTA-94-MW03	residuum	1/27/2020	5.06	784.57	786.49	6 - 21	22.60	781.43
FTA-94-MW06	bedrock	1/27/2020	5.36	787.84	789.78	5.5 - 20.5	27.69	784.42
FTA-94-MW11	bedrock	1/27/2020	22.94	804.82	806.79	57.2 - 67.2	70.81	783.85
FTA-94-MW12	deep bedrock	1/27/2020	4.78	785.13	787.16	81.1 - 91.1	93.95	782.38
FTA-94-MW13	deep bedrock	1/27/2020	24.77	805.89	808.06	116 - 126	127.9	783.29
FTA-94-MW14	bedrock	1/27/2020	17.87	807.44	807.2	65 - 75	75.30	789.33
FTA-94-MW15	deep bedrock	1/27/2020	12.50	793.14	795.19	35 - 45	93.32	782.69
FTA-94-MW16	bedrock	1/27/2020	9.48	790.99	793.0	81.4 - 91.4	46.65	783.52

bgs = below ground surface BTOC = Below top of casing

ft = feet

msl = Mean sea level

Table 4-2: Horizontal Hydraulic Gradients, January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

Upgradient Well	Well Type	Groundwater Elevation	Downgradient Well	Well Type	Groundwater Elevation	Estimated Groundwater Flow Direction	Horizontal Distance	Groundwater Elevation Difference (feet)	Horizontal Gradient (ft/ft)
FTA-94-MW06	bedrock	784.42	FTA-94-MW12	deep bedrock	782.38	north-northwest	313	2.04	0.007
FTA-94-MW11	bedrock	783.85	FTA-94-MW12	deep bedrock	782.38	northeast	277	1.47	0.005
FTA-94-MW11	bedrock	783.85	FTA-94-MW13	deep bedrock	783.29	southwest	47	0.56	0.012
FTA-94-MW11	bedrock	783.85	FTA-94-MW16	bedrock	783.52	north	281	0.33	0.001
FTA-94-MW14	bedrock	789.33	FTA-94-MW13	deep bedrock	783.29	north	206	6.04	0.029
FTA-94-MW15	deep bedrock	782.69	FTA-94-MW12	deep bedrock	782.38	east	155	0.31	0.002
							Average Horiz	ontal Gradient:	0.009

Elevations in feet above mean sea level.

ft/ft = feet per foot

Table 4-3: Groundwater Field Parameters, January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

Sample Location	Well Type	Sample Date	Temperature (°C)	Conductivity (µs/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	TDS (g/L)	Turbidity (NTU)	pН	Fe (II) (mg/L)
FTA-94-MW03	residuum	1/27/20	14.1	491	1.21	54.6	0.3192	25.81	7.25	NM
FTA-94-MW11	bedrock	1/28/20	16.5	469	1.39	-9.8	0.3043	3.27	7.29	0
FTA-94-MW12	deep bedrock	1/27/20	13.20	518	0.98	-149.9	0.3368	10.30	7.58	NM
FTA-94-MW13	deep bedrock	1/28/20	16.80	450	6.39	-216.9	0.293	3.21	9.41	NM
FTA-94-MW15	deep bedrock	1/27/20	15.20	630	1.79	37.1	0.4095	3.97	7.93	NM
FTA-94-MW16	bedrock	1/27/20	15.60	354	2.90	96.1	0.2301	7.71	11.26	NM

°C = Degrees Celsius

Fe (II) = Ferrous Iron

g/L = Grams per liter

mg/L = Milligrams per liter

 $\mu s/cm = Microsiemens \ per \ centimeter$

mV = Millivolts

NM = Not measured

NTU = Nephelometric turbidity units

ORP = Oxidation-reduction potential

TDS = Total Dissolved Solids

Table 4-4: Groundwater Results for Detected VOCs and MNA Parameters, January 2020 Monitoring Event Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)

McClellan, Anniston Alabama

			FTA-94-MW03	FTA-94-MW11	FTA-94-MW12	FTA-94-MW13	FTA-94-MW15	FTA-94-MW16
Method	Parameters	Units	1/27/20	1/28/20	1/27/20	1/27/20	1/27/20	1/27/20
VOCs								
SW8260B	Chlorobenzene	μg/L	< 1	41	< 1	< 1	< 1	< 1
SW8260B	Cis-1,2-Dichloroethene	μg/L	< 1	4.4	< 1	< 1	< 1	< 1
SW8260B	Trans-1,2-Dichloroethene	μg/L	< 1	1.7	< 1	< 1	< 1	< 1
SW8260B	Trichloroethene	μg/L	0.69 J	54	< 1	< 1	< 1	< 1
SW8260B	Vinyl Chloride	μg/L	< 1	4.7	< 1	< 1	< 1	< 1
MNA Paramete	rs							
RSK-175	Methane	μg/L		58				
SW6010C	Iron	μg/L		17 J				
SW6010C	Manganese	μg/L		15				
SW6010C	Manganese, dissolved	μg/L		9.8 J				
SW9056A	Sulfate	mg/L		7.1				

-- = not analyzed/sampled

< = Indicates the analyte was not detected at the reported quantitation limit shown.

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

MNA = Monitored Natural Attenuation

VOCs = Volatile Organic Compounds

Lab Flag:

J = Estimated detection. Concentration is between the method detection limit and the reporting limit.

Table 4-5: VOC COCs and Degradation Products in Groundwater Compared to MCLs Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston Alabama

]	FTA-94-MW0	3 (Residuum)							
VOCs (µg/L)	MCL	11/29/00	4/2/02	3/24/04	2/11/05	12/13/05	6/20/06	12/11/06	6/18/07	12/10/07	6/25/08	12/9/08	12/22/09	12/15/10	1/22/13	1/14/14	1/13/15	1/12/16	1/17/17
Chlorobenzene (COC)	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene (DP)	70	< 5	0.22 J	< 1	< 1	< 1	< 1	< 1	0.22 J	< 1	0.28 J	< 1	0.31 J	0.26 J	0.3 J	0.28 J	0.24 J	< 1.0	< 1.0
trans-1,2-Dichloroethene (DP)	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (COC)	5	2.5 J (J)	1.5	1	0.76 J	0.8 J	1.2	0.73 J	1.1	1.3	1.1	0.9 J	1.1	1.1	0.81 J	0.86 J	0.9 J	0.93 J	1.1
Vinyl Chloride (COC)	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8

		FT	3 (Residuum)	
VOCs (µg/L)	MCL	1/23/18	1/9/19	1/27/20
Chlorobenzene (COC)	100	< 1	< 1	< 1
cis-1,2-Dichloroethene (DP)	70	< 1	< 1	< 1
trans-1,2-Dichloroethene (DP)	100	< 1	< 1	< 1
Trichloroethene (COC)	5	0.52 J	0.80 J	0.69 J
Vinyl Chloride (COC)	2	< 0.8	< 1	< 1

									J	TA-94-MW	11 (Bedrock)								
VOCs (µg/L)	MCL	12/18/00	3/23/04	2/8/05	12/15/05	6/19/06	12/11/06	6/18/07	12/13/07	6/24/08	12/8/08	12/22/09	12/14/10	1/22/13	1/15/14	1/14/15	1/12/16	1/17/17	1/23/18
Chlorobenzene (COC)	100	300	10	4.1	25	31	11	< 1	16	< 1	2.4	< 1	12	< 1	18	< 1.0	4.3 (JM)	17	28
cis-1,2-Dichloroethene (DP)	70	37	13	6.2	12	19	9	< 1	5.4	< 1	6.9	< 1	4.4	< 1	3.6	< 1.0	1.8	3.8	6.9
trans-1,2-Dichloroethene (DP)	100	8.3	2	0.76 J	1	1.6	1.1	< 1	1.2	< 1	0.61 J	< 1	0.62 J	< 1	0.84 J	< 1.0	0.50 J	0.83 J	1.2
Trichloroethene (COC)	5	75	34	16	18	41	16	1.1	6	1.2	5.2	0.98 J	3.4	< 1	25	0.49 J	10 (JM)	5.3	17
Vinyl Chloride (COC)	2	25	1.4	0.52 J	2.4	8.3	9.7	< 1	13	< 0.8	2	< 0.8	16	< 0.8	8.9	< 0.8	9.3	20	20

		F'.	ΓA-94-MW1	1 (Bedrock)
VOCs (µg/L)	MCL	1/9/19	1/28/20	
Chlorobenzene (COC)	100	39	41	
cis-1,2-Dichloroethene (DP)	70	3.8	4.4	
trans-1,2-Dichloroethene (DP)	100	1.7	1.7	
Trichloroethene (COC)	5	39	54	
Vinyl Chloride (COC)	2	6.6	4.7	_

Table 4-5: VOC COCs and Degradation Products in Groundwater Compared to MCLs Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston Alabama

									FTA-94-MW12 (Deep Bedrock)										
VOCs (µg/L)	MCL	5/24/01	3/25/04	2/14/05	12/13/05	6/20/06	12/11/06	6/18/07	12/12/07	6/25/08	12/9/08	12/22/09	12/15/10	1/22/13	1/14/14	1/13/15	1/12/16	1/18/17	1/23/18
Chlorobenzene (COC)	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1
cis-1,2-Dichloroethene (DP)	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.32 J	< 1.0	< 1.0	< 1.0	< 1
trans-1,2-Dichloroethene (DP)	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1
Trichloroethene (COC)	5	< 5	< 1	< 1	0.74 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1
Vinyl Chloride (COC)	2	< 5	< 1	< 1	< 1	< 1	0.28 J	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8

	FTA:	-94-MW12 (Deep Bedrock)
MCL	1/9/19	1/27/20
100	< 1	< 1
70	< 1	< 1
100	< 1	< 1
5	< 1	< 1
2	< 1	< 1
	100 70	MCL 1/9/19 100 < 1

		FTA-94-MW13 (Deep Bedrock)																	
VOCs (µg/L)	MCL	7/18/01	10/15/01	4/3/02	3/23/04	2/8/05	6/19/06	12/13/06	6/18/07	12/12/07	6/24/08	12/8/08	12/15/09	12/14/10	1/22/13	1/15/14	1/14/15	1/12/16	1/17/17
Chlorobenzene (COC)	100	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene (DP)	70	0.6 J (J)	0.46 J (nv)	0.62 J	0.72 J	0.22 J	0.83 J	< 1	< 1	1.3	1	0.93 J	0.88 J	0.53 J	0.48 J	< 1.0	0.37 J	0.27 J	0.27 J
trans-1,2-Dichloroethene (DP)	100	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (COC)	5	7	4.8 (nv)	5.5	10	2	1 J	0.34 J	0.26 J	< 1	0.28 J	0.29 J	0.35 J	0.24 J	0.2 J	< 1.0	< 1.0	< 1.0	0.24 J
Vinyl Chloride (COC)	2	< 1	< 2 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	0.37 J	< 0.8	< 0.8	0.25 J	< 0.8	0.27 J	< 0.8	< 0.8	< 0.8	< 0.8

		FTA-94-MW13 (Deep Bedrock)						
VOCs (µg/L)	MCL	1/23/18	1/9/19	1/27/20				
Chlorobenzene (COC)	100	< 1	< 1	< 1				
cis-1,2-Dichloroethene (DP)	70	0.22 J	< 1	< 1				
trans-1,2-Dichloroethene (DP)	100	< 1	< 1	< 1				
Trichloroethene (COC)	5	< 1	< 1	< 1				
Vinyl Chloride (COC)	2	< 0.8	< 1	< 1				

Table 4-5: VOC COCs and Degradation Products in Groundwater Compared to MCLs Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston Alabama

			FTA-94-MW15 (Deep Bedrock)																
VOCs (µg/L)	MCL	7/20/01	4/2/02	3/23/04	2/10/05	12/19/05	6/21/06	12/13/06	6/20/07	12/12/07	6/25/08	12/9/08	12/14/09	12/14/10	1/21/13	1/14/14	1/14/15	1/11/16	1/17/17
Chlorobenzene (COC)	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene (DP)	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene (DP)	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (COC)	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride (COC)	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8

		FTA-	94-MW15	(Deep Bedrock)
VOCs (µg/L)	MCL	1/22/18	1/9/19	1/27/20
Chlorobenzene (COC)	100	< 1	< 1	< 1
cis-1,2-Dichloroethene (DP)	70	< 1	< 1	< 1
trans-1,2-Dichloroethene (DP)	100	< 1	< 1	< 1
Trichloroethene (COC)	5	< 1	< 1	< 1
Vinyl Chloride (COC)	2	< 0.8	< 1	< 1

			FTA-94-MW16 (Bedrock)																
VOCs (µg/L)	MCL	7/19/01	3/25/04	2/10/05	12/20/05	6/21/06	12/13/06	6/20/07	12/12/07	6/25/08	12/9/08	12/14/09	12/14/10	1/21/13	1/14/14	1/13/15	1/11/16	1/17/17	1/22/18
Chlorobenzene (COC)	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-Dichloroethene (DP)	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-Dichloroethene (DP)	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (COC)	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.27 J	< 1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride (COC)	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8

		F	TA-94-MW16 (Bedrock)
VOCs (µg/L)	MCL	1/9/19	1/27/20
Chlorobenzene (COC)	100	< 1	< 1
cis-1,2-Dichloroethene (DP)	70	< 1	< 1
trans-1,2-Dichloroethene (DP)	100	< 1	< 1
Trichloroethene (COC)	5	0.67 J	< 1
Vinyl Chloride (COC)	2	< 1	< 1

Notes:

< = Indicates the analyte was not detected at the reported quantitation limit shown.

COC = Constituent of concern

DP = Degradation product

 μ g/L = micrograms per liter

MCL = Maximum Contaminant Level

VOCs = Volatile Organic Compounds

Result > MCL

Lab Flag:

J = Estimated detection. Concentration is between the method detection limit and the practical quantitation limit.

Validation Flags:

(nv) = Not validated

(J) = The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample.

(JM) = Estimated detection; matrix spike and matrix spike duplicate were outside laboratory control limits.

Samples collected in 2000 through 2002 by IT Corporation (IT), data from IT's *Remedial Investigation* (IT, 2002). Samples collected in 2004 to the present by Matrix Environmental Services, LLC (MES).

Table 4-6: Current and Historical Groundwater Results for MNA Parameters for Well FTA-94-MW11
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston Alabama

					FTA-94-N	MW11			
MNA Parameters	Units	3/23/04 (Baseline)	2/8/05	12/15/05	6/19/06	12/11/06	6/18/07	12/13/07	6/24/08
Ethane	μg/L	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Ethene	μg/L	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Methane	μg/L	17	7.7	27	33	11	0.71 J	15	< 1.2
Iron (Total)	mg/L	1.81	0.656 J	0.605 J		0.393 J	0.0418 J	0.505 J	0.299 J
Iron (Dissolved)	mg/L	1.32	0.517 J	0.315 J		< 1	< 1	0.0563 J	< 1
Manganese (Total)	mg/L	0.146	0.125	0.0858		0.0542	0.0113	0.0778	0.0372
Manganese (Dissolved)	mg/L	0.135	0.111	0.0886		0.0686	0.0041 J	0.0788	< 0.01
Nitrate-N	mg/L	< 0.1	0.112	(UJC)		< 0.1	0.11	< 0.1	0.198
Nitrite-N	mg/L	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Sulfate	mg/L	7.6	10.8	5.52		6.67	7.47	9.76	9.33
Ammonia (NH3-N)	mg/L	< 0.1	0.352	< 0.1		< 0.1	0.19	< 0.1	0.304
Total Kjeldahl Nitrogen (TKN)	mg/L	0.306	0.522	0.19 (JC)		0.158	0.235	0.167	0.309

					FTA-94-N	/W11			
MNA Parameters	Units	12/8/08	12/15/09	12/14/10	1/22/13	1/15/14	1/14/15	1/12/16	1/17/17
Ethane	μg/L	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Ethene	μg/L	< 1.5	< 1.5	< 1.5	< 1.5	1.3 J	< 1.5	< 1.5	0.7 J
Methane	μg/L	8.5	< 1.2	67	0.4 J	30	< 1.2	5.4 (JQ)	13
Iron (Total)	mg/L	0.213 J	0.0547 J	0.391 J	0.135 J	0.184 J	0.0427 J	0.330 J	1.25
Iron (Dissolved)	mg/L	< 1	< 1	< 1	0.0565 J	0.0627 J	< 1.0	0.139 J	0.340 J
Manganese (Total)	mg/L	0.117	0.00503 J	0.065	0.0133	0.0165	< 0.01	(JQ)	0.0513
Manganese (Dissolved)	mg/L	0.119	< 0.010	0.022	0.00605 J	0.00967 J	< 0.01	0.0177	0.0508
Nitrate-N	mg/L	< 0.1	0.0559 J	0.0842 J	0.0822 J	< 0.1	0.179	0.0584 J	0.104
Nitrite-N	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sulfate	mg/L	12.7	5.48	5.39	4.87	4.22	3.68	5.08 (JQ)	4.18
Ammonia (NH3-N)	mg/L	< 0.1	0.121	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Kjeldahl Nitrogen (TKN)	mg/L	0.13	0.397	0.307	0.368	0.701	0.226	0.175	0.168

Table 4-6: Current and Historical Groundwater Results for MNA Parameters for Well FTA-94-MW11
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston Alabama

_		FTA-94-MW11	
Units	1/23/18	1/9/19	1/28/20
μg/L	< 1.5	< 1.1	< 1.1
μg/L	1 J	< 1	< 1.0
μg/L	34	< 0.58	58
mg/L	0.881 J	0.11	17 J
mg/L	0.411 J	0.025 J	< 50
mg/L	0.0535	0.015	15
mg/L	0.0698	0.0093 J	9.8 J
mg/L	< 0.1	< 0.05	< 0.050
mg/L	< 0.1	< 0.05	< 0.050
mg/L	4.17	3.8	7.1
mg/L	0.0758 J	< 0.25 (UJ)	< 0.25
mg/L	0.183	0.11 J	< 0.20
	μg/L μg/L μg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	Units 1/23/18 μg/L < 1.5	μg/L < 1.5 < 1.1 μg/L 1 J < 1 μg/L 34 < 0.58 mg/L 0.881 J 0.11 mg/L 0.411 J 0.025 J mg/L 0.0535 0.015 mg/L 0.0698 0.0093 J mg/L < 0.1 < 0.05 mg/L < 0.1 < 0.05 mg/L < 0.1 < 0.05 mg/L 4.17 3.8 mg/L 0.0758 J < 0.25 (UJ)

Notes:

- -- = not analyzed/sampled
- < = Indicates the analyte was not detected at the reported quantitation limit shown.

 $\mu g/L = micrograms \ per \ liter$

 $mg/L = milligrams \ per \ liter$

MNA = Monitored Natural Attenuation

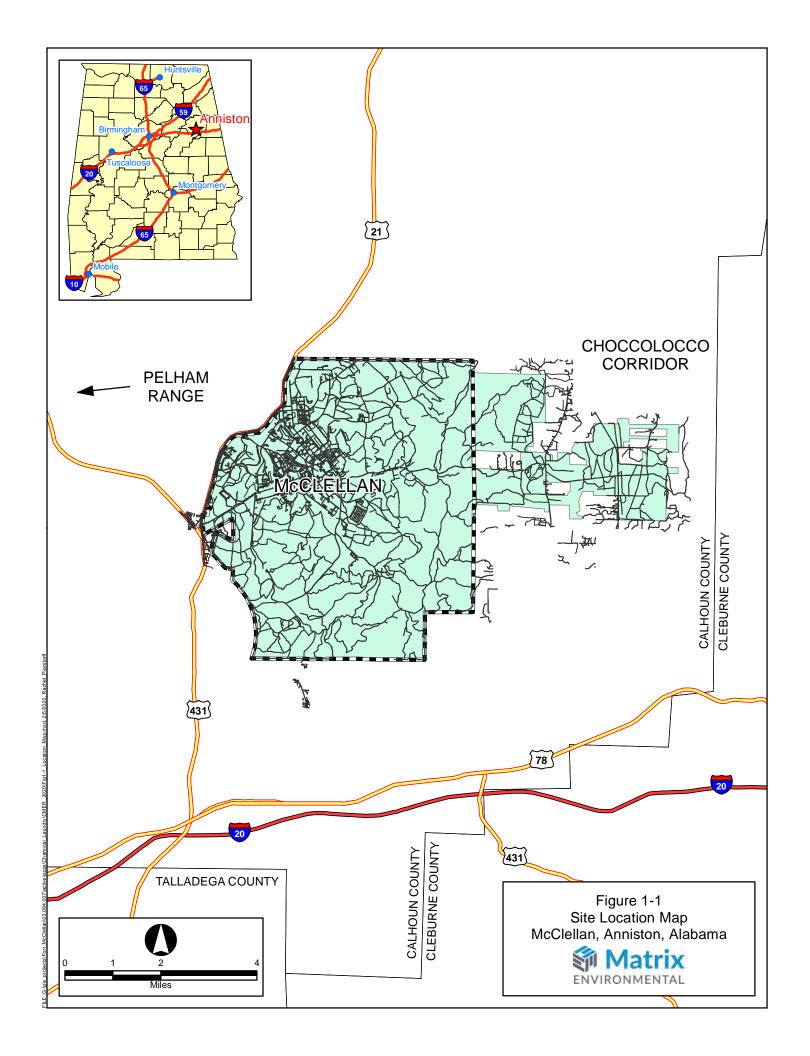
Lab Flag:

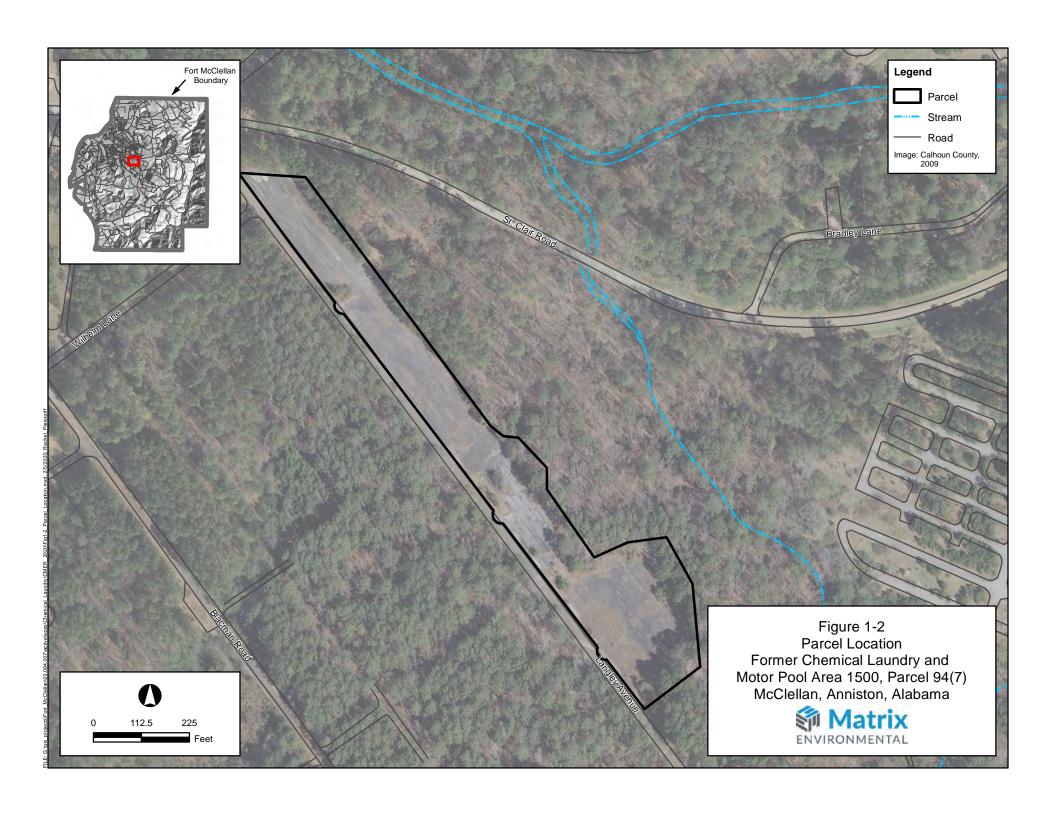
J = Estimated detection. Concentration is between the method detection limit and the reporting limit.

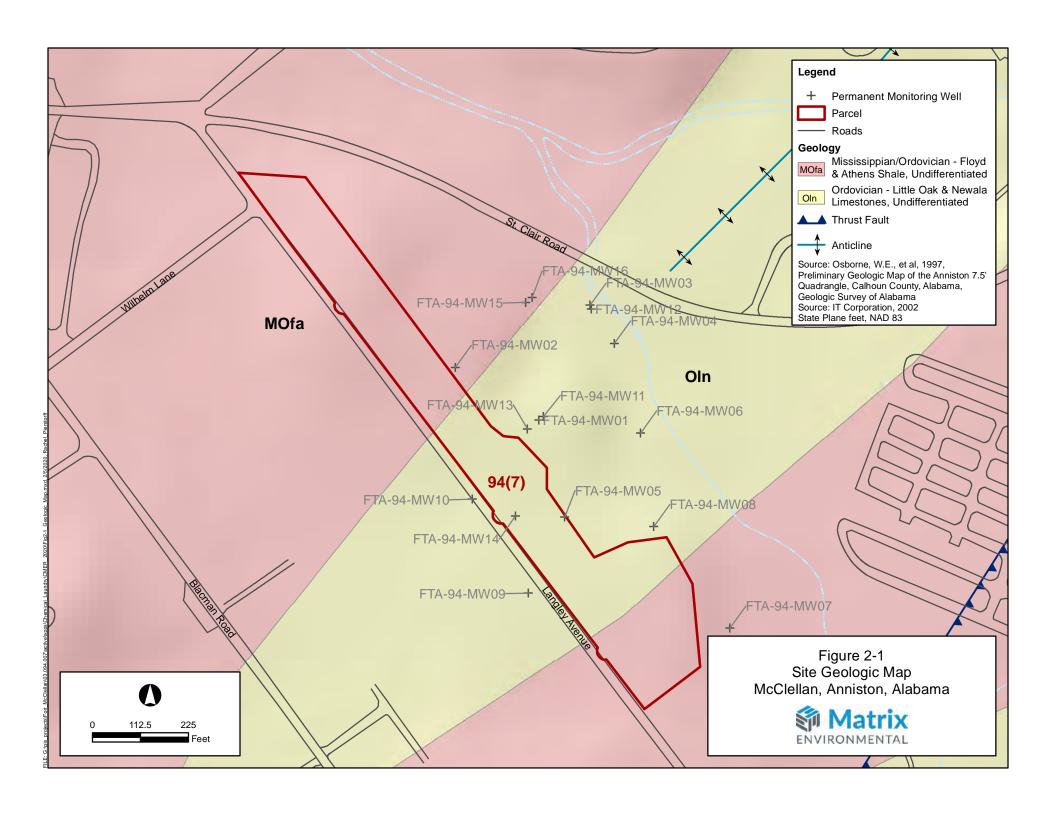
Validation Qualifiers (denoted with parenthesis):

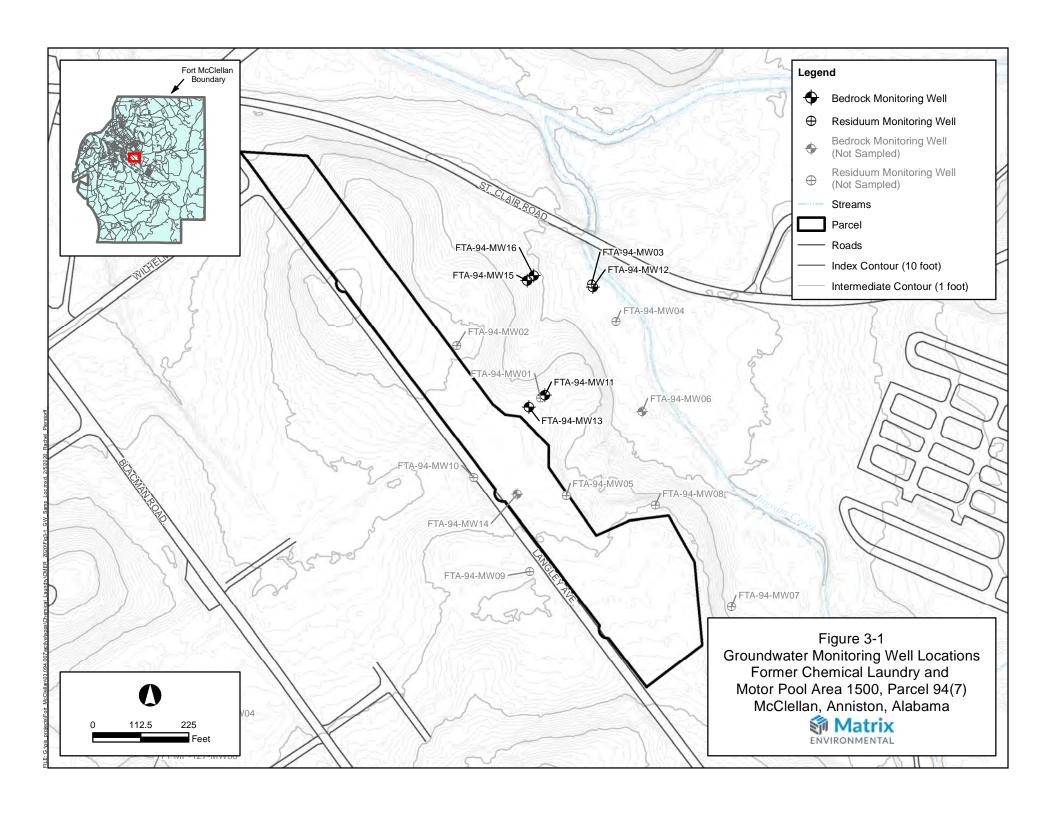
J = Estimated detection. The associated numerical value is the approximate concentration of the analyte in the sample.

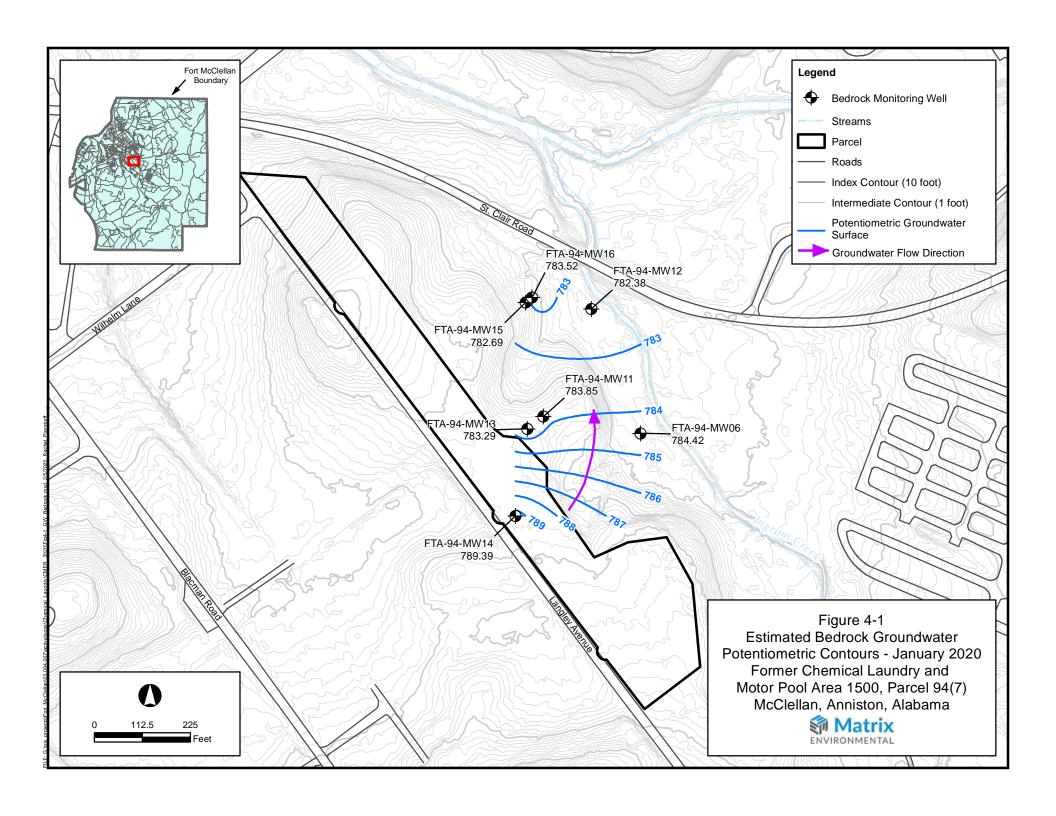
UJ = Estimated reporting limit due to low QC recovery(ies).


Validation Sub-qualifiers:


 $C = Continuing\ calibration\ was\ outside\ method-specific\ control\ limits.$


M = Matrix spike/matrix spike duplicate outside project criteria.


Q = Field duplicate was outside project criteria.



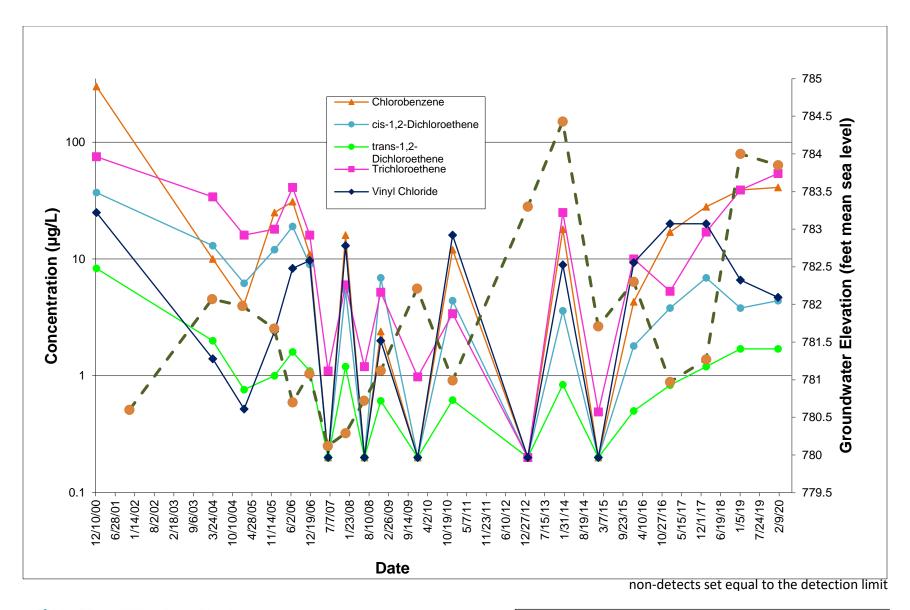


Figure 4-2a: VOC Concentrations and Groundwater Trends Well FTA-94-MW11 (Logarithmic Scale)

> Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

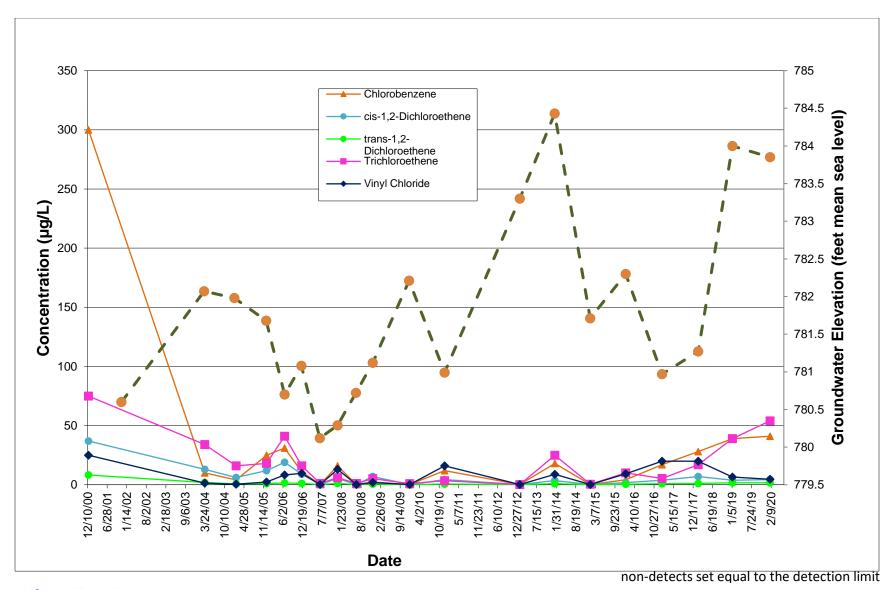


Figure 4-2b: VOC Concentrations and Groundwater Trends Well FTA-94-MW11 (Linear Scale)

Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

APPENDICES

Corrective Measures Effectiveness Report
January 2020 Monitoring Event
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston, Alabama

APPENDIX A

Groundwater Levels and Sample Collection Logs

Matrix Environmental Service 283 Rucker Street Anniston, Alabama 36205 (256) 847-0780 (256) 847-0905

Project Name		
	Chem Laundry	
Project Number		
	19.094.20-02.1	

GROUNDWATER LEVELS

Field Personnel Measuring Equipment Date
Tulley/Abernathy Solinst Water Level Meter 1/27/2020

Conditions

Well ID	Casing Diameter (in)	Date	Time	Depth to Water (feet)	Well Depth (feet)	Water Column (feet)	Initials
FTA-94-MW02	2	1/27/2020	9:35	28.93	55.00	26.07	DA
FTA-94-MW10	2	1/27/2020	9:40	15.88	38.49	22.61	DA
FTA-94-MW14	4	1/27/2020	9:43	17.81	75.30	57.49	DA
FTA-94-MW09	2	1/27/2020	9:50	18.38	32.18	13.80	DA
FTA-94-MW05	2	1/27/2020	9:47	19.43	38.26	18.83	DA
FTA-94-MW08	2	1/27/2020	9:55	21.22	26.28	5.06	DA
FTA-94-MW07	2	1/27/2020	8:55	6.55	20.01	13.46	DA
FTA-94-MW16	4	1/27/2020	10:00	9.48	46.65	37.17	DA
FTA-94-MW06	4	1/27/2020	9:05	5.36	27.69	22.33	DA
FTA-94-MW15	4	1/27/2020	10:03	12.5	93.32	80.82	DA
FTA-94-MW03	2	1/27/2020	8:30	5.06	22.60	17.54	DA
FTA-94-MW12	2	1/27/2020	8:45	4.78	93.95	89.17	DA
FTA-94-MW04	2	1/27/2020	9:12	4.81	22.13	17.32	DA
FTA-94-MW11	4	1/27/2020	9:20	22.94	70.81	47.87	DA
FTA-94-MW01	4	1/27/2020	9:25	23.53	44.42	20.89	DA
FTA-94-MW13	4	1/27/2020	9:30	24.77	127.93	103.16	DA

1	e	1
	ot	I
1	OI.	1

QA/QC Samples

N/A

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202

Station Name/Sample ID FTA-94-MW03 Project Number Project

(303) 572-0200 ENVIRONMENTAL (303) 572-0202 McClellan 19.094.20-02.1 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/27/2020 5.06 Low Flow Location (Site) **Begin Time** feet Well Depth (TOC) Chem Laundry 8:30 22.6 Sample Depth Equipment Laboratory feet TestAmerica 18.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 17.54 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers 45 YSI Pro Plus inches Geocontrol PRO Casing Volume **Weather Conditions** 2.81 gallons Calibration Ferrous Iron (Fe II) (mg/L "=x0.04 2"=x0.16 4"=x0.65 6"=x1.47 8"=x10.4 Field Overcast Well Elevation (TOC) 786.49 1/27/2020 N/A feet Groundwater Elevation Parameter Stabilization Product Observed (yes/no) Depth to product temp +/- 1° DO +/- 10% Turbidity +/- 10% 781.43 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (µS/cm) (mg/L) (mV) (g/L) (NTU) (°C) clarity odor color (gallon) 9:15 750 14.10 484.6 2.24 114.3 0.3153 117.40 7.14 Cloudy Brown None 9:20 750 14.10 484.9 1.87 109.6 0.3153 90.86 7.16 Cloudy Brown None 9:25 750 14.20 486.2 3.67 84.7 0.3165 75.47 7.19 Cloudy Brown None 9:30 750 14.10 489.1 1.06 64.5 0.3179 57.40 7.22 Cloudy Yellow None 9:35 750 14.00 489.3 0.75 63.5 0.3179 56.47 7.23 Cloudy Yellow None 750 14.00 489 2.30 63.9 0.3179 55.58 7.23 Cloudy Yellow None 9:40 9:45 750 14.10 489.9 4.53 57.7 0.3185 29.74 7.24 Cloudy Clear None 9:50 750 14.10 490.1 4.12 55.0 0.3185 25.86 7.25 Cloudy Clear None 14.10 490.7 54.9 0.3192 25.01 9:55 750 1.12 7.25 Cloudy Clear None 10:00 750 14.10 490.7 0.87 54.7 0.3192 26.06 7.25 Cloudy Clear None 490.9 0.3192 25.81 7.25 Cloudy Clear None 10:05 750 14.10 1.21 54.6 10:06 cm p//2 Total Time (min.) Total Volume Removed Well pumped dry (yes/no) 50 7500 No

Signature

Dup 340

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202

Station Name/Sample ID FTA-94-MW11 Project Number Project

(303) 572-0200 ENVIRONMENTAL (303) 572-0202 McClellan 19.094.20-02.1 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/28/2020 22.94 Location (Site) Low Flow Begin Time feet Well Depth (TOC) Chem Laundery 11:00 70.81 Laboratory Sample Depth Equipment feet TestAmerica 62.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 47.87 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers YSI Pro Plus inches Geocontrol PRO Casing Volume **Weather Conditions** 31.12 gallons Calibration Ferrous Iron (Fe II) (mg/L "=x0.04 2"=x0.16 4"=x0.65 6"=x1.47 8"=x10.4 Field Sunny Well Elevation (TOC) 0 806.79 1/28/2020 feet Groundwater Elevation Parameter Stabilization temp +/- 1° DO +/- 10% Turbidity +/- 10% Product Observed (yes/no) Depth to product 783.85 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (°C) (µS/cm) (mg/L) (mV) (g/L) (NTU) clarity color odor (gallon) Clear 11:15 500 16.30 295.9 4.03 28.3 0.1924 6.29 7.82 Clear None 11:20 500 16.20 372.8 2.49 41.4 0.2424 7.24 7.50 Clear Clear None 11:25 500 16.20 397.5 2.28 27.9 0.2581 5.66 7.44 Clear Clear None 11:30 500 16.30 416.1 1.96 18.1 0.2704 4.98 7.40 Clear Clear None Clear 11:35 500 16.60 444.7 1.27 -8.5 0.2919 3.51 7.32 Clear None Clear 500 16.50 464.8 1.07 -14.10.3023 4.03 7.29 Clear None 11:40 None 11:45 500 16.60 465.5 1.16 -14.3 0.3029 2.98 7.29 Clear Clear 11:50 500 16.60 468.5 1.51 -10.6 0.3042 3.03 7.29 Clear Clear None 16.50 468.6 1.39 -9.8 0.3043 3.27 7.29 Clear Clear None 11:55 500 11:56 1 C-Total Time (min.) Total Volume Removed Well pumped dry (yes/no) Notes 40 4000 No QA/QC Samples Signature

N/A

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202 (303) 572-0200 (303) 572-0202

Sta	tion Name/Sample ID	
	FTA-94	-MW12
Pro	oject	Project Number
	McClellan	19 094 20-02 1

(303) 572-0200 ENVIRONMENTAL (303) 572-0202 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/27/2020 4.78 Low Flow Location (Site) Begin Time feet Well Depth (TOC) Chem Laundry 10:30 93.95 Sample Depth Equipment Laboratory feet TestAmerica 85.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 89.17 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers YSI Pro Plus inches Geocontrol PRO Casing Volume **Weather Conditions** 14.27 gallons Calibration Ferrous Iron (Fe II) (mg/L "=x0.04 2"=x0.16 4"=x0.65 6"=x1.47 8"=x10.4 Field Overcast Well Elevation (TOC) 787.16 1/27/2020 N/A feet Groundwater Elevation Parameter Stabilization temp +/- 1° DO +/- 10% Turbidity +/- 10% Product Observed (yes/no) Depth to product 782.38 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (°C) (µS/cm) (mg/L) (mV) (g/L) (NTU) clarity color odor (gallon) 0.3354 10:45 500 14.00 546.4 3.42 -104.6 5.04 7.57 Clear Clear None 10:50 500 14.20 516.6 1.90 -127.9 0.3361 6.84 7.58 Clear Clear None 10:55 500 14.10 516.2 1.56 -137.6 0.3354 7.76 7.57 Clear Clear None None 11:00 500 14.00 517.2 1.30 -144.6 0.3361 9.12 7.57 Clear Clear 11:05 500 13.60 518.5 1.32 -144.4 0.3367 10.02 7.57 Clear Clear None Clear 11.90 522.1 1.22 -140.70.3393 9.85 7.52 Clear None 11:10 500 11:15 500 12.00 519.9 1.10 -140.9 0.3361 9.88 7.52 Clear Clear None 11:20 500 12.60 517.7 1.04 -148.9 0.3367 10.10 7.57 Clear Clear None 12.90 517.9 1.03 -149.8 9.98 Clear 11:25 500 0.3367 7.58 Clear None 500 13.20 518.1 0.98 -149.9 0.3368 10.30 7.58 Clear Clear None 11:30 11:31 اہر) Total Time (min.) Total Volume Removed Well pumped dry (yes/no) 4500 45 No QA/QC Samples Signature

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202

Station Name/Sample ID FTA-94-MW13 Project Number Project

(303) 572-0200 ENVIRONMENTAL (303) 572-0202 McClellan 19.094.20-02.1 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/28/2020 24.77 Low Flow Location (Site) **Begin Time** feet Well Depth (TOC) 9:00 Chem Laundry 127.93 Sample Depth Equipment Laboratory feet TestAmerica 120.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 103.16 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers YSI Pro plus inches Geocontrol PRO Casing Volume **Weather Conditions** 67.05 gallons Calibration Ferrous Iron (Fe II) (mg/L '=x0.04 2''=x0.16 4''=x0.65 6''=x1.47 8''=x10.4 Field Sunny 808.06 1/28/2020 N/A feet Groundwater Elevation Parameter Stabilization temp +/- 1° DO +/- 10% Turbidity +/- 10% Product Observed (yes/no) Depth to product 783.29 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (°C) (µS/cm) (mg/L) (mV) (g/L) (NTU) clarity color odor (gallon) 0.301 8.94 Clear 9:35 500 13.40 464.8 7.93 -80.4 9.59 Clear None 9:40 500 13.70 460.2 5.63 -102.2 0.298 9.02 9.08 Clear Clear None 9:45 500 14.90 453.8 5.27 -203.3 0.296 8.86 9.38 Clear Clear None 9:50 500 14.90 454.6 5.56 -204.8 0.295 7.07 9.38 Clear Clear None Clear 9:55 500 14.80 454.6 2.14 -205.9 0.295 6.98 9.38 Clear None Clear 500 15.30 453.1 4.67 -212.5 0.294 6.37 9.40 Clear None 10:00 10:05 500 16.00 450.6 4.72 -215.5 0.293 3.33 9.41 Clear Clear None 10:10 500 16.40 449.8 6.55 -217.3 0.293 2.90 9.41 Clear Clear None 16.80 449.6 6.39 -216.9 0.293 3.21 Clear Clear None 10:15 500 9.41 10:16 Collection 28-30 20 Total Time (min.) Total Volume Removed Well pumped dry (yes/no) Notes 4000 No 40 QA/QC Samples Signature N/A

QA/QC Samples

N/A

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202

Station Name/Sample ID FTA-94-MW15 Project Number Project

(303) 572-0200 ENVIRONMENTAL (303) 572-0202 McClellan 19.094.20-02.1 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/27/2020 12.5 Location (Site) Low Flow Begin Time feet Well Depth (TOC) 12:30 Chem Laundry 93.32 Laboratory Sample Depth Equipment feet TestAmerica 85.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 80.82 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers YSI Pro Plus inches Geocontrol PRO Casing Volume **Weather Conditions** 52.53 gallons Calibration Ferrous Iron (Fe II) (mg/L "=x0.04 2"=x0.16 4"=x0.65 6"=x1.47 8"=x10.4 Field Overcast Well Elevation (TOC) 795.19 1/27/2020 N/A feet Groundwater Elevation Parameter Stabilization temp +/- 1° DO +/- 10% Turbidity +/- 10% Product Observed (yes/no) Depth to product 782.69 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (°C) (µS/cm) (mg/L) (mV) (g/L) (NTU) clarity color odor (gallon) 13.70 0.4108 7.97 Clear 13:00 500 634.6 3.11 23.5 17.85 Clear None 13:05 500 14.00 632.8 3.02 21.2 0.4095 16.86 7.97 Clear Clear None 13:10 500 14.70 633 3.59 15.3 0.4095 14.09 7.95 Clear Clear None 13:15 500 14.50 632 4.36 29.0 0.4095 13.56 7.94 Clear Clear None Clear 13:20 500 15.00 630 2.32 28.4 0.4095 3.98 7.92 Clear None Clear 13:25 500 15.20 630 1.79 36.7 0.4095 4.04 7.93 Clear None 13:30 500 15.20 630 1.81 36.9 0.4095 3.11 7.93 Clear Clear None 37.1 13:35 500 15.20 630 1.79 0.4095 3.97 7.93 Clear Clear None 13:36 m) Total Time (min.) Total Volume Removed Well pumped dry (yes/no) Notes 3500 No 35

Signature

QA/QC Samples

N/A

Matrix Environmental Services 1601 Blake Street, Suite 200 Denver, Colorado 80202 (303) 572-0200

Station Name/Sample ID FTA-94-MW16 Project Number Project

ENVIRONMENTAL (303) 572-0202 McClellan 19.094.20-02.1 **GROUNDWATER SAMPLING LOG** Groundwater Depth (TOC) Sample Method Sampler Date Tulley 1/27/2020 9.48 Low Flow Location (Site) Begin Time feet Well Depth (TOC) 14:00 Chem Laundry 46.65 Sample Depth Equipment Laboratory feet TestAmerica 40.0 Water Column Thickness Geocontrol Pro, Sample Suite Water Level Meter 35.99 See COCs feet Casing Diameter Temperature (°F) Meters Serial numbers 52 YSI Pro Plus inches Geocontrol PRO Casing Volume **Weather Conditions** 23.39 gallons Calibration Ferrous Iron (Fe II) (mg/L "=x0.04 2"=x0.16 4"=x0.65 6"=x1.47 8"=x10.4 Field Sunny Well Elevation (TOC) 793 1/27/2020 N/A feet Groundwater Elevation Parameter Stabilization temp +/- 1° DO +/- 10% Turbidity +/- 10% Product Observed (yes/no) Depth to product 783.52 cond +/- 3% ORP +/- 10mV pH +/- 0.1 unit N/A N/A Volume Description Turbidity Temp Cond DO ORP TDS Time pН removed (°C) (µS/cm) (mg/L) (mV) (g/L) (NTU) clarity color odor (gallon) 0.2301 11.18 Clear 14:20 500 15.30 354.9 3.58 37.0 9.00 Clear None 14:25 500 15.40 354.1 3.82 39.2 0.2294 8.76 11.21 Clear Clear None 14:30 500 15.70 354 3.07 68.1 0.2294 7.14 11.25 Clear Clear None 14:35 500 15.50 353.8 2.79 75.7 0.2301 8.08 11.26 Clear Clear None Clear 14:40 500 15.50 354.2 2.80 94.5 0.2301 7.99 11.26 Clear None 14:45 500 15.50 354.4 3.03 95.9 0.2301 7.07 11.25 Clear Clear None 14:50 500 15.60 354.3 2.90 96.1 0.2301 7.71 11.26 Clear Clear None 14:51 Total Time (min.) Total Volume Removed Well pumped dry (yes/no) Notes 30 3000 No

Signature

APPENDIX B

Chain-of-Custody Forms

MATRIX ENVIRONMENTAL SERVICES CHAIN OF CUSTODY RECORD

							CC	OC Number	50	370				
Laborato	ry TestAmerica							Cooler ID		of 1				
	oct Jon Lawhon; Amy Ra	agnaldsen						Page	1	of 1				
MES Conta	ict Betty Van Pelt									An	alysis			
MES Phor	ne 801-699-1246									Mn 33	Mn e Je	2°C 4	e, te	
	ect Parcel 94(7), Chem	Laundry/Motor	Pool					SC H	HCI		, Fe, M filter) None	Vorg	Nitrite, none)C HCL
	c# 19.094.20-02.1				1						ab fi	000 Y	, e e, N	50 - VOC vials, HC
Lab contrac						ed	σ,	50 - VC vials,	ru >	010B Metals, Fe, - Total 250mL poly, HNC	6010B Metals, Fe, N Dissolved (lab filter) - 250mL poly, None	4500-NH3F, 4500NorgC 1-250 mL poly, H2SO4	Sulfate ml. poly,	oc via
232 33.13.3						Collected	<u>ä</u> ,	826 mL	RSK-175 -40mL vi		B N lve	H3F	Su ML	82(mL
						8	le l	SW8260 -40 mL vi	RSK-17 3-40mL	010	010 isso 250	1-250 mL	V9056	SW8260 -40 mL vi
S) 1				1	Date	Sample Time	က်	· co	SW6010B	SW6010B Metals, - Dissolved (lab · 1 - 250mL poly,	450	SW9056	2
Samplers Signature			Station		Sample		U)			1				
SWMU	Station ID	QC Code	Code	Matrix	Method									
LTM - ChemLaundry	FTA-94-MW03	NS	MW	Water	BP	1/27/20	10:06	X				4 1 4		
TM - ChemLaundry	FTA-94-MW11	NS	MW	Water	BP	1/28/20	11:56	X	X	X	Х	X	X	
LTM - ChemLaundry	FTA-94-MW12	NS	MW	Water	BP	1127120	11:31	X						
LTM - ChemLaundry	FTA-94-MW13	NS	MW	Water	BP	1128120	10:16	X						
Limi Onomización				* *** ***	BP	1127/20	13:36	X						
	FTA-94-MW15	NS	MW	Water	DI DI	1								
LTM - ChemLaundry		NS NS	MW	Water	BP	1/27/20	14:51	Х			/			
LTM - ChemLaundry LTM - ChemLaundry LTM - ChemLaundry	FTA-94-MW15							X	Х	X	Х	Х	X	X

NOTES:

QC Code: NS = Investigative Sample, FD = Field Duplicate, MS/MSD = Matrix Spike/Matrix Spike Duplicate, EB = Equipment Blank, TB = Trip Blank, WQ = Water Quality, WS = Source Water Station Type = MW = Monitoring Well, BH = Bore Hole, SD = Sediment, SW = Surface Water, SS = Surface Soil, SU = Sump, WS = Waste Solid/Soil, WW = Waste Water Sampling Method: G = Grab, BP = bladder pump, PDB = PDB bag White Copy = Lab COC, Yellow COC = Field Copy, Pink COC = Data Mgmt

14:00

Double the number of bottles for MS/MSD

COMMENTS:

Relinquished by (Signature):

Date/Time:

Received by (Signature):

Fed EX

Relinquished by (Signature):

Date/Time:

Received by (Signature):

DUP#340 - FTA-94-MWII

APPENDIX C

Data Quality Summary

Appendix C

Data Quality Summary:

Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

January 2020 Monitoring Event

Prepared for:

Prepared by:

283 Rucker Street, Bldg. 3165 Anniston, Alabama 36205 (256) 847-0780 Fax (256) 847-0905

March 2020

TABLE OF CONTENTS

LIST OF TABLES				
ATT	ACHM	ENTS	II	
LIST	OF A	BBREVIATIONS AND ACRONYMS	III	
1.0	INTI	RODUCTION	1-1	
2.0	PRO 2.1 2.2 2.3 2.4	JECT DESCRIPTION PROJECT OBJECTIVES DATA QUALITY LEVELS DATA QUALITY OBJECTIVES ANALYTICAL SERVICES 2.4.1 Analytical Program 2.4.2 Quality Control	2-1 2-1 2-1 2-4	
3.0	DEV	IATIONS FROM PLANNED FIELD ACTIVITIES	3-1	
4.0	ASSI 4.1 4.2	LABORATORY DATA QUALITY	4-1 4-1 4-1	
5.0	RES (5.1	ULTS OF QUALITY CONTROL ANALYSES QUALITY CONTROL PROCEDURES AND RESULTS OF QUECONTROL ANALYSES 5.1.1 Field Quality Control Procedures and Analyses 5.1.1.1 Matrix Spike/Matrix Spike Duplicate and Laboratory Decomposition of Samples 5.1.1.2 Field Duplicate Samples 5.1.1.3 Trip Blank Analyses 5.1.2 Laboratory Quality Control Procedures and Analyses 5.1.2.1 Initial Sample Inspection and Chain-of-Custody Documentate 5.1.2.2 Holding Times 5.1.2.3 Laboratory Control Sample/Laboratory Control Duplicate 5.1.2.4 Method Blank Samples 5.1.2.5 Surrogate Recovery 5.1.2.6 Internal Standards	JALITY 5-1 5-1 5-1 5-2 5-3 5-3 5-4 Sample 5-4 5-4	
	5.2	5.1.2.7 Initial and Continuing Calibration	5-6 5-6	

	5.2.3 Representativeness	
	5.2.5 Completeness	5-7
	5.2.6 Comparability	5-7
6.0	REPORTING LIMITS AND DATA USES	6-1
	6.1 LABORATORY REPORTING LIMITS	6-1
	6.2 COMPARISON OF LABORATORY REPORTING LIMITS TO MCLS	6-1
7.0	CONCLUSIONS	7-1
8.0	REFERENCES	
	LIST OF TABLES	
	LIST OF TABLES	
C5-1	Sample Index	
C5-2	Summary of MS/MSD Recoveries and RPDs	
C5-3	Field Duplicate Cross Reference	
C5-4	Summary of Field Duplicate and Investigative Sample RPDs	
C5-5	Summary of LCS/LCSD Recoveries and RPDs	
C5-6	Summary of Surrogate Recoveries	
C6-1	Reporting Limits and Method Detection Limits Compared to MCLs	
	ATTACHMENTS	

Laboratory Data Report

C1

LIST OF ABBREVIATIONS AND ACRONYMS

ADEM Alabama Department of Environmental Management

ARBCA Alabama Risk-Based Corrective Action Guidance Manual, Revision 3

CCAL Continuing calibration

CMI Plan Final Corrective Measures Implementation Plan

COC Chain-of-custody

December 2007 to Final Corrective Measures Effectiveness Report, December 2007, June December 2010 2008, December 2008, December 2009, and December 2010 Monitoring

CMER Events

DQO Data Quality Objective
DQS Data Quality Summary
EB Equipment blank

EPA United States Environmental Protection Agency

FD Field duplicate
GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

ICAL Initial calibration

IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCSD Laboratory control sample duplicate

LFS low flow sampling

MCL Maximum contaminant level MDA McClellan Development Authority

MDL Method detection limit

MES Matrix Environmental Services, LLC

MNA Monitored Natural Attenuation

MS Matrix spike

MSD Matrix spike duplicate

PARCCS Precision, accuracy, representativeness, completeness, comparability, and

sensitivity

QA Quality assurance
QAP Quality Assurance Plan

QC Quality control %R Percent recovery RL Reporting limit

RPD Relative percent difference RSD Relative standard deviation

Site Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)

SOP Standard operating procedure TAL TestAmerica Laboratories, Inc.

TB Trip blank

TKN Total Kjeldahl Nitrogen VOC Volatile Organic Compound

1.0 INTRODUCTION

Matrix Environmental Services, LLC (MES) has prepared this Data Quality Summary (DQS) on behalf of the McClellan Development Authority (MDA) in support of the sampling event conducted in January 2020 at the Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) (the Site) within McClellan, Anniston, Alabama, formerly known as Fort McClellan. The purpose of this sampling event was to collect data to support the implementation of monitored natural attenuation (MNA) as part of the remedial alternative for contaminated groundwater at the Site.

This DQS addresses the data quality review for groundwater samples collected during the January 2020 sampling event. The approved methods used to conduct the investigation are discussed in the *Quality Assurance Plan (QAP)* in *Appendix A* of the *Final Installation-Wide Sampling and Analysis Plan* (MES, 2013) which details the specifics of quality assurance (QA) and quality control (QC) with respect to sampling and data evaluation.

2.0 PROJECT DESCRIPTION

Project objectives and QA objectives in terms of precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) are described in this section.

2.1 PROJECT OBJECTIVES

The objective of the environmental sampling at the Site is to evaluate the effectiveness of MNA in groundwater at the Site for the degradation of chlorinated solvents. To support this objective, groundwater samples were collected from one residuum well and five bedrock wells during one round of sampling conducted in January 2020 using low flow sampling (LFS) techniques. The groundwater samples were analyzed for volatile organic compounds (VOCs) and MNA parameters.

2.2 DATA QUALITY LEVELS

During the field program, groundwater samples were collected and analyzed with screening level methods for field parameters and definitive level methods for specific chemical analytes. Screening and definitive level data are defined as follows (United States Environmental Protection Agency [EPA], 1994):

- Screening Level Data Screening level data are subject to minimal QC requirements. Results are often not compound-specific and not quantitative, but results are available in real time. Obtaining screening level data is less costly than obtaining definitive level data, but the results are less defensible because of the greater potential for error and the inherent precision and accuracy limitations. This level is normally used for field investigation health and safety screening, but can also be used to identify media or samples for consideration for further analyses. Field pH, conductivity, temperature, turbidity, total dissolved solids, dissolved oxygen, and oxidation/reduction potential measurements collected during this investigation are considered screening level data.
- <u>Definitive Level Data</u> Analyses performed using established analytical procedures and strict QC procedures produce definitive level data. Applicable EPA test methods (EPA, 1983 and 1986) were used to collect definitive level data for the Site. Analytical results produced were analyte-specific with confirmation of analyte identity and concentration. Definitive level data meeting quality criteria are suitable for site assessments, risk assessments, remedial design, and remediation efforts.

2.3 DATA QUALITY OBJECTIVES

QA objectives in terms of PARCCS are outlined below.

Precision is a measure of the reproducibility of a set of duplicate analytical results, usually under prescribed similar conditions. Precision, as discussed in Section A3.3.1 in the *QAP*, is expressed in terms of the relative percent difference (RPD) between duplicate determinations, or in terms of

the relative standard deviation (RSD) when three or more determinations are made. Various measures of precision exist depending on the prescribed similar conditions.

Overall sampling and analysis precision was assessed using RPDs for duplicate environmental samples and matrix spike/matrix spike duplicates (MS/MSDs). The RPDs for laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results were used to assess laboratory precision. RPD is defined as the difference between two measurements divided by their mean and expressed as a percent (%) as shown in the following equation:

RPD =
$$\frac{|X - Y|}{(X + Y)/2}$$
 x 100%

where:

X = Primary sample concentration (primary field investigative sample, MS, or LCS) Y = Duplicate sample concentration (laboratory duplicate, field duplicate [FD], MSD, or LCSD)

To evaluate precision, the RPDs for MS/MSDs, laboratory duplicates, and LCS/LCSDs were compared to laboratory historical limits. The RPDs for FDs were compared to the project precision goal of 50 percent for aqueous samples.

The RSD is the standard deviation of a set of values divided by the average value expressed as a percent as shown in the following equation:

$$RSD = S/\overline{X} \times 100$$

where:

 \underline{S} = The standard deviation of the sample data

 \overline{X} = The arithmetic mean of the sample data

RSDs can be used to evaluate the linearity of the initial calibration (EPA, 1986).

Accuracy is a measure of the agreement of an analytical result with the true value. Accuracy, as discussed in Section A3.3.2 in the QAP, is typically expressed as a percent recovery (%R) calculated by the ratio of the measurement and accepted true value as shown in the following equation:

$$%R = ((Xs - Xu) / K) \times 100\%$$

where:

Xs = Measured value of the spiked sample

Xu = Measured value of the unspiked sample

K = Known amount of the spike in the sample

Analytical accuracy is assessed through the analysis of spikes such as surrogates, MS/MSDs and LCS/LCSDs, performance evaluation samples, standard reference materials and calibration check samples. Surrogates and MS/MSDs are spiked into the actual sample matrix and are accuracy indicators that take into account the nature of the matrix in question and the native

concentration of the analyte spiked. Matrix variability or interferences from high concentrations of native compounds may adversely affect spike recovery and yield less than conclusive data. Accuracy checks that focus on analytical method and consist of compounds spiked in a blank or non-interfering matrix (e.g., LCSs or calibration check samples) address the accuracy of the method or instrumentation at detecting the target analyte(s) at a certain quantification level and are not considered to be subject to matrix effects. The accuracy of sample results can also be affected by holding time violations.

Representativeness, as described in Section A3.3.3 in the *QAP*, is a qualitative parameter that expresses the degree to which sample data actually represent the matrix conditions. For example, in conducting groundwater monitoring, representativeness requires proper location of wells and the collection of samples under consistent, documented procedures. Wells are located based upon the results of the hydrogeologic study in progress and are designed to provide maximum coverage of the flow conditions. Requirements and procedures for sample collection and handling are designed to maximize sample representativeness. Representativeness can also be monitored by reviewing field documentation and by performing field QA audits.

Completeness, as discussed in Section A3.3.4 in the *QAP*, represents the percentage of valid data collected from a sampling/analytical program or measurement system compared to the amount achieved under optimal conditions. The completeness goal for investigative samples is 95 percent. Completeness is calculated using the following formula:

Percent Complete =
$$\frac{\text{Valid Data}}{\text{Total Data}} \times 100\%$$

Valid data are identified during the data review process as being acceptable for use or usable as qualified. Invalid data are identified as rejected.

Comparability, as discussed in Section A3.3.5 of the *QAP*, is a qualitative parameter expressing the confidence with which one data set can be compared with another. Comparability for sampling and analysis tasks is achieved by:

- Specifying well-recognized techniques and accepted standard methods for sampling and analysis, and using well-trained sampling and analysis technicians to execute the prescribed methods consistently.
- Requiring that sampling and analysis personnel produce adequate documentation to record how the prescribed methods were actually executed.
- Noting non-conformances and corrective measures taken.

Specifying standardized laboratory methods helps to ensure that the data generated for a sampling event are comparable to past and future sampling events.

Sensitivity is used broadly here to describe the method detection limits (MDLs) or reporting limits (RLs) established to meet project-specific data quality objectives (DQOs). In addition, sensitivity can be used to describe the capability of a method or instrument to discriminate

between measurement responses. Several limits have been established to describe sensitivity requirements as specified in Section A3.3.6 of the *QAP*. Reported instrument detection limits (IDLs) and MDLs are typically based upon a reagent water matrix or purified solid, and ignore sample matrix interferences and the resulting effects on the limits. For this reason, published MDLs or IDLs may not be achievable for environmental samples. The *QAP* RLs were generated by the laboratory and may exceed Maximum Contaminant Levels (MCLs) due to instrument limitations. Section 6.2 discusses the comparisons between the MCLs and the laboratory RLs and MDLs for the sampling events.

2.4 ANALYTICAL SERVICES

TestAmerica Laboratories, Inc. (TAL), Savannah, Georgia, provided analytical services for the sampling conducted by MES.

2.4.1 Analytical Program

The *QAP* lists the EPA analytical methods used to meet definitive data requirements. The methods used to analyze constituents of concern in samples during the January 2020 sampling event are:

- Method SW8260B VOCs by Gas Chromatography/Mass Spectrometry (GC/MS)
- Method RSK-175 Light hydrocarbons methane, ethane, and ethene by gas chromatography (GC)
- Method SW6010C Total and Dissolved Metals (iron and manganese) by Inductively Coupled Plasma Atomic Emission Spectrometry
- Method SW9056A Anions (Sulfate, Nitrate, Nitrite) by Ion Chromatography
- Method EPA 350.1 Ammonia by Colorimetry
- Method EPA 351.2 Total Kjeldahl Nitrogen (TKN) by Spectrophotometry

2.4.2 Quality Control

The *QAP* describes the analytical QC requirements. The results of the analytical QC data review for this sampling event are presented in Section 5.0.

3.0 DEVIATIONS FROM PLANNED FIELD ACTIVITIES

Field activities were performed as outlined in the *Final Corrective Measures Implementation Plan (CMI Plan)* (MES, 2006). No deviations from the *CMI Plan* were noted during the preparation of this DQS.

4.0 ASSESSMENT OF DATA QUALITY

Data quality is assessed through two review processes. The contracted analytical laboratory performs the first data review to assess compliance with *QAP*-approved analytical methods (MES, 2013) and with laboratory standard operating procedures. MES performs the second data review to assess compliance with the QA objectives, and to assess hard copy and electronic deliverable consistency and integrity.

4.1 LABORATORY DATA QUALITY ASSESSMENT

The laboratory data quality assessment includes an analytical data review to ensure accurate and complete data reporting and compliance with the analytical method specifications.

4.1.1 Laboratory Qualification of Data

The laboratory will flag analytical results, when necessary, to indicate potential impacts to data usability and to alert the user to special analytical conditions. More than one qualifier may be used to indicate multiple conditions or situations that apply to an individual result. The following laboratory qualifiers were used during this investigation:

FLAG	DESCRIPTION
J	Estimated value. The analyte is positively identified, and the concentration is less
	than the RL but greater than the MDL.
U	Analyte is not detected above the RL.

4.2 MES DATA QUALITY AND USABILITY ASSESSMENT

The following sections describe the procedures that MES followed to assess the quality and usability of both field measurement and definitive data. Data assessment is complete when 100 percent of the information have been collected and reviewed. Based on the results of the review process, data are categorized as fully usable, usable as qualified, or rejected.

4.2.1 Data Review and Validation

MES reviewed the analytical data in accordance with the *QAP* (MES, 2013), analytical methods (EPA, 1986), and *USEPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data Review* (EPA, 2014a and 2014b). The data review process included reviewing and evaluating 100 percent of the hard copy data for (1) extraction and analysis holding times, (2) surrogate recoveries, (3) blank detections, (4) LCS/LCSD recoveries and RPDs, (5) MS/MSD recoveries and RPDs, (6) FD RPDs, (7) laboratory duplicate RPDs, if applicable, (8) initial and continuing calibrations, (9) instrument tuning and performance, (10) reporting limits, and (11) completeness of the chain-of-custody (COC) forms.

Hard copy data packages were checked to verify that the following items were included:

- Case narrative
- Data summary sheets
- Initial and continuing calibrations
- Method or preparation blanks (at least one per QC batch)
- MS/MSD (5 percent of client samples)
- LCS/LCSD (one per QC batch)
- Duplicate analyses (laboratory duplicate sample, LCS/LCSD, MS/MSD, as applicable)
- Holding times
- Retention time window calculation (if applicable)
- Standard preparation sheets
- Linear range calculations (correlation coefficients)

The results of the review of the chemical data obtained during this investigation are included in Section 5.0. The laboratory data package is included in Attachment C1.

4.2.2 MES Qualification of Data

Based on the data review, MES may assign final qualifiers to analytical results on both the hard copy results and in the database. The following final qualifiers may be assigned to the results to describe data quality and usability:

FLAG	DESCRIPTION
J	Estimated detection. The associated numerical value is the approximate
	concentration of the analyte in the sample.
UJ	Analyte was analyzed for, but was not detected. The reported quantitation limit
	is estimated.
U	Result was qualified as not detected above the RL or reported sample
	quantitation limit.

In addition to the qualifier, a sub-qualifier is applied to describe the specific multiple conditions or situations that apply to an individual result. These qualifiers and sub-qualifiers are collectively referred to as validation codes.

Whenever duplicate sets of results were reported by the laboratory due to dilutions, re-analyses, re-extractions, or dual column analytical methods, the MES reviewer chose the "most-preferred" results based on the data review. In Section 5.0, only the reportable data are shown in Tables C5-2 to C5-6.

5.0 RESULTS OF QUALITY CONTROL ANALYSES

Table C5-1 lists samples and analytical methods included in the January 2020 sampling event for the Site. To evaluate the data quality, the results were compared to method requirements and laboratory historical control limits.

No data were qualified based on the data review process. None of the analytical data were rejected. The results of the data review process are discussed further in the following sections.

5.1 QUALITY CONTROL PROCEDURES AND RESULTS OF QUALITY CONTROL ANALYSES

Two types of QC results were used to evaluate data quality: field QC samples were collected and analyzed to evaluate field sampling activities, and laboratory QC samples were analyzed to evaluate laboratory analytical procedures and maintain control of the analytical methods.

5.1.1 Field Quality Control Procedures and Analyses

Field QC samples included MS/MSD samples, FD and trip blank (TB). The *QAP* was used as the guidance document to identify the appropriate number of field QC samples, procedures for their collection and analysis, and evaluation of results required for this sampling event. The evaluation procedures for the field QC sample analyses are summarized below.

5.1.1.1 Matrix Spike/Matrix Spike Duplicate and Laboratory Duplicate Samples

MS and MSD samples are investigative samples spiked by the laboratory with known concentrations of target analytes. MS and MSD sample results are used to evaluate possible matrix interferences. The formulas used to calculate the percent recoveries and RPDs are presented in Section 2.3.

Accuracy was assessed by calculating the MS and MSD %Rs of the concentrations of the target analytes added to the investigative sample. The %Rs were then compared to laboratory historical control limits. When both the MS and MSD %Rs were outside laboratory historical control limits, MS/MSD qualifiers were applied only to the results for the investigative sample used for the MS/MSD. When only an MS was analyzed, qualifiers were applied when the MS %R was outside laboratory historical control limits. Low recoveries in an MS/MSD may indicate the matrix has negatively influenced the results. Constituent concentrations could be potentially higher in samples with low MS/MSD recoveries. High MS/MSD recoveries may indicate the matrix has positively influenced the results. Constituent concentrations may be potentially lower in samples with high MS/MSD recoveries.

Precision was assessed by calculating the RPDs for the MS/MSD sample pairs and laboratory duplicate samples. The MS/MSD and laboratory duplicate RPD values were reviewed to assess the precision of the analytical results based on the magnitude of the RPD values. In cases where a target analyte was not detected in at least one of the MS/MSD or laboratory duplicate sample pair, an RPD would not be valid, and therefore, was not calculated. Qualifiers were not

applied based on the MS/MSD or laboratory duplicate RPD values, however, the MS/MSD and laboratory duplicate RPD values were compared to laboratory historical control limits to assess if further evaluation of the data was warranted.

For the January 2020 sampling event, site specific MS/MSD was not collected; batch QC was analyzed for the MS and MSD for Methods SW8260B, RSK-175, and SW6010B; for the MS and laboratory duplicate for Methods E350.1 and E351.2; and FTA- 94-MW11 was used for the batch QC for Method SW9056A. Data in this SDG are not qualified based on batch QC from another project. No sample results were qualified because of MS and MSD percent recovery data for method SW9056A. A summary of the MS/MSD %R data is shown in Table C5-2.

Because greater than 98 percent of the MS and MSD percent recovery results were within the laboratory control limits, the overall accuracy of the analytical results is considered to be acceptable.

A summary of the MS/MSD RPD data are shown in Tables C5-2. All of the MS/MSD RPD values met the laboratory's historical control limits. Because greater than 98 percent of the MS/MSD and laboratory duplicate RPD results were within the laboratory control limits, the overall variability of the precision measurements is considered to be acceptable.

5.1.1.2 Field Duplicate Samples

FD samples were collected and analyzed as specified in the *QAP* (Section A6.3.5). FD samples are independent samples collected simultaneously or in immediate succession with the original investigative samples such that they are expected to be equally representative of the medium at the time of sampling. These samples provide precision information for the entire measurement system, including sample collection, handling, shipping, storage, preparation, and analysis. The precision of FD pairs was assessed by calculating the RPDs using the equation in Section 2.3. In cases where a target analyte was not detected in either sample or was detected in only one of the samples, an RPD would not be valid, and therefore, was not calculated.

One groundwater FD sample was collected for the January 2020 sampling event. Table C5-3 lists the original station name from the COC forms (i.e. COC IDs used to disguise the sample's identity when the sample was sent to the laboratory), the parent station name, and the methods analyzed.

The results for the FD and associated investigative sample analyses were reviewed to assess the precision of the analytical results based on the magnitude of the RPD values. Table C5-4 presents the results of detected analytes. The criterion of 50% for aqueous samples was used to assess if further evaluation of the data was warranted. All the field duplicate RPDs met criteria with one exception, however at least one of the results for manganese, dissolved is trace level and were therefore not qualified. The overall variability of the precision measurements is considered acceptable.

5.1.1.3 Trip Blank Analyses

TBs are used to assess the potential introduction of contaminants from sample containers or during the sampling, transportation, and storage procedures (MES, 2013). A TB sample consists of VOC sample vials filled in the laboratory with American Society of Testing and Materials Type II reagent grade water, transported to the sampling site, handled like an environmental sample and returned to the laboratory for analysis. TBs are not opened in the field and are only prepared when aqueous VOC samples are scheduled to be collected and analyzed by the laboratory. Sample results are considered affected by trip blank contamination when the sample concentration is less than five times the blank concentration (ten times for common laboratory contaminants acetone, methylene chloride, and 2-butanone). Affected sample results less than the reporting limit and less than five times the associated blank concentrations are considered non-detects at the reporting limit. Affected sample results greater than the reporting limit and less than five times the blank concentration are considered non-detects at the concentration observed in the sample. One TB was collected for the January 2020 sampling event. No analytes were detected in the TB collected during the January 2020 sampling event. No data qualified for TBs.

5.1.2 Laboratory Quality Control Procedures and Analyses

Laboratory QC checks include internal system checks and QC samples used to monitor the possible effect of laboratory activities on sample results. The analytical method and method-specific Standard Operating Procedures (SOPs) developed by the laboratory define the types of laboratory QC checks required. QC procedures followed by the laboratory include sample container inspection, COC documentation review, sample holding time review, LCS/LCSD analyses, method blank analyses, and surrogate spike percent recovery evaluation. The laboratories are also responsible for analytical instrument calibration, which includes method-specific criteria for initial and continuing calibrations for external and internal standard calibration procedures.

5.1.2.1 Initial Sample Inspection and Chain-of-Custody Documentation

The laboratory inspected the shipping containers upon receipt and compared the contents with the COC form associated with each cooler. Information from the sample check-in procedure was recorded on the Sample Receipt Form, including sample receipt anomalies. These forms were used by the laboratory to document that sample identifications listed on the COC forms agreed with the samples contained in the coolers. The laboratory verified that COC forms were filled out properly, sample containers were not broken, custody seals were intact, the pH met method-specific criteria for water samples (if applicable), and cooler temperatures were maintained at 4 ± 2 degrees Celsius. The completed forms are included in the laboratory analytical packages and were reviewed during the data review process. The samples arrived at the laboratory at the proper temperature, and no sample containers were damaged during transit.

MES compared the data on the COC forms with the laboratory reports and documented any differences. If minor discrepancies were found and verified by the laboratory, the laboratory

reports and MES electronic databases were corrected. In addition to the COC checks, MES reviewers verified approximately 10 percent of the laboratory hard copy reports against the laboratory electronic data deliverables.

5.1.2.2 Holding Times

Samples were shipped regularly in coordination with the analytical laboratory to ensure analyses were conducted within the required holding times. The time elapsed between sample collection and sample extraction/analysis was calculated as part of the review process to evaluate if holding times were met. Holding time criteria were met for the sampling event included in this DQS, therefore, accuracy of the analytical results is acceptable with regards to holding time.

5.1.2.3 Laboratory Control Sample/Laboratory Control Sample Duplicate

The laboratory analyzed LCS/LCSD pairs with each analytical batch of field samples to assess internal precision and accuracy. LCS/LCSD pairs consisted of analyte-free water spiked with selected target constituents of known concentration. The LCS/LCSD %Rs and RPDs are used to determine laboratory accuracy and precision, respectively. The formulas used to calculate the %Rs and RPDs are presented in Section 2.3. The %Rs and RPDs were then compared to laboratory historical control limits. When the LCS and LCSD %Rs were outside laboratory historical control limits, the LCS/LCSD qualifications were applied to investigative samples within the same analytical batch. Qualifiers were applied only when both the LCS and LCSD %Rs were outside laboratory historical control limits. In cases where only an LCS was analyzed, qualifiers were applied when the LCS %R was outside laboratory historical control limits. Qualifiers were not applied based on LCS/LCSD RPD values, however, the LCS/LCSD RPD values were compared to laboratory historical control limits to assess if further evaluation of the data was warranted. For the sampling event included in this DQS, MES reviewed the LCS/LCSD %Rs and RPDs for Methods RSK-175, E350.1, E351.2, SW6010B, SW8260B, and SW9056A.

Table C5-5 shows the LCS/LCSD %R and RPD data. The LCS/LCSD %Rs and RPDs met criteria with the exceptions noted. 2-Hexanone and 4-methyl-2-penatanone were above acceptance criteria in the LCS and LCSD but not detected in associated samples. Trans-1,2-dichloropropene was above criteria in the LCS but not detected in associated samples. Because no qualifiers were required based on the LCS/LCSD %Rs, and because greater than 96 percent of the RPD results were within the laboratory control limits, the overall accuracy and precision measurements are considered to be acceptable.

5.1.2.4 Method Blank Samples

Method blanks are prepared and analyzed by the laboratory to assess the level of background interferences and possible contamination in the analytical system. The method blank must be carried through the complete procedure and contain analyte-free reagents in the same volumes as used in processing the samples. The goal is to conduct investigative sample analysis in such a manner that sample contamination is not introduced by the analytical methods, equipment, or

reagents. If such contamination occurs, it is usually identified by the detection of target analytes at trace or low concentrations in the method blanks. When these detections are found, the laboratory investigates the source, qualifies the affected data as appropriate according to the magnitude of the detections, and implements corrective measures as appropriate. For the sampling event included in this DQS, method blanks were prepared and analyzed with each analytical batch for Methods RSK-175, E350.1, E351.2, SW6010B, SW8260B, and SW9056A. No analytes were detected in the method blank samples; no qualifiers were required based on method blank results.

5.1.2.5 Surrogate Recovery

Surrogate spike compounds were added to investigative samples during organic analyses to assess the individual matrix effect of investigative samples and to monitor overall analytical system performance. Surrogate recoveries that are outside the laboratory historical control limits may indicate performance problems with the analytical system and extraction procedures, or significant matrix effects when evaluated in conjunction with the MS/MSD results. MES reviewers used laboratory historical control limits to assess percent recoveries for surrogate spike constituents. For sample results affected by surrogate percent recoveries less than the lower control limit, detects were qualified as estimated (J) and may be biased low, and non-detects were qualified as estimated (UJ) and may be potential false negatives. For sample results affected by surrogate percent recoveries greater than the upper control limit, detects were qualified as estimated (J) and may be biased high. No qualifiers are required for non-detect results based on high surrogate recoveries. A summary of the surrogate percent recovery data is provided in Table C5-6. All surrogates met acceptance criteria. No qualifiers were required for sample results based on surrogate recoveries.

5.1.2.6 Internal Standards

Adherence to method-specific internal standards (ISs) criteria ensures that GC/MS sensitivity and response are stable during each analysis. *SW-846* (EPA, 1986) recommended ISs are often brominated, fluorinated, or stable isotopically labeled analogs of specific target compounds, or are closely related compounds whose presence in environmental samples is unlikely. The IS spike solution is added after the preparation or extraction of a sample. ISs are used in internal calibration methods to correct sample results affected by column injection loss, purging loss, or viscosity effects. ISs are added to environmental samples, control standards, and blanks, in accordance with method requirements and laboratory SOPs (MES, 2013). No qualifiers were required for sample results based on the IS data.

5.1.2.7 Initial and Continuing Calibration

The calibration of an analytical instrument involves the delineation of the relationship between the response of the instrument and the concentration of an analyte introduced into the instrument. An initial calibration (ICAL) is performed on an analytical instrument prior to the analysis of samples to ensure that the equipment is capable of producing acceptable qualitative and quantitative data. The continuing calibration (CCAL) is the verification of the ICAL at periodic intervals. The CCAL demonstrates that the instrument is capable of acceptable performance

during the course of the analytical analysis. Review of the ICAL data included the evaluation of the correlation coefficients and relative standard deviations. Review of the CCAL data included the evaluation of the percent difference between the concentration of the CCAL standard and the expected concentration. For sample results associated with CCAL data that did not meet method-specific criteria, detects and non-detects were qualified as estimated (J and UJ, respectively). No qualifiers were required for samples based on ICAL and CCAL data.

5.2 SUMMARY OF DATA QUALITY INDICATORS

A summary of the data quality indicators in terms of the PARCCS are described in this section.

5.2.1 Precision

As discussed in Section 2.3, the precision evaluation included field precision (FDs), laboratory precision (LCS/LCSDs), and combined field/laboratory precision (MS/MSDs). The MS/MSD, FD, and LCS/LCSD RPDs are discussed in Sections 5.1.1.1, 5.1.1.2, and 5.1.2.3 of this report, respectively. Based on this evaluation, the precision of the data is acceptable for its intended use.

5.2.2 Accuracy

As discussed in Section 2.3, the accuracy evaluation included a comparison of spike recoveries from field samples (surrogate and MS/MSD spikes) and laboratory QC samples (LCS and LCSD), and assessing holding time. The MS/MSD, LCS/LCSD, and surrogate spike recoveries are discussed in Sections 5.1.1.1, 5.1.2.3, and 5.1.2.5, respectively, and holding time is discussed in Section 5.1.2.2. Recoveries from MS/MSDs, LCS/LCSD and surrogate percent recoveries were compared to laboratory historical control limits to determine a laboratory's ability to accurately determine both qualitative and quantitative results. The investigative sample results were within the required percent recovery limits. The investigative sample results were within the required holding time limits. Based on this evaluation, the accuracy of the data is acceptable for its intended use.

5.2.3 Representativeness

Representativeness is the degree to which the data accurately and precisely portray the environmental conditions being studied. For this investigation, sampling procedures and locations were selected to accurately represent overall Site conditions and were biased toward areas that were likely to exhibit evidence of past releases. Sampling was conducted using known, approved field procedures to minimize variability introduced during field sampling. The investigative and FD analyses indicate that the overall combined variability introduced by the sampling procedures, sample matrix, and laboratory analysis is acceptable, and the FD samples are representative of the data associated with the investigative sample.

5.2.5 Completeness

Completeness refers to the amount of valid data obtainable from a measurement system compared to the expected amount of data. Data that have not been qualified as rejected during the data validation process are considered to be valid. As presented in the *QAP* (MES, 2013), a completeness goal of 95 percent was established for investigations. Of the 359 investigative and field duplicate sample records from the January 2020 sampling event, no records were qualified as rejected based on MES' review of the data. Therefore a completeness of 100 percent was calculated for the sampling event, which exceeds project goals. One hundred percent of the results are usable and are acceptable for their intended use.

5.2.6 Comparability

Comparability expresses the confidence with which one data set can be compared to another. Comparability objectives were met by minimizing the number of contract laboratories used, using EPA methods for analyses, and reporting results in standardized units. The comparability objective for the project was fulfilled.

6.0 REPORTING LIMITS AND DATA USES

This section discusses the laboratory reporting limits and how they compare to the MCLs.

6.1 LABORATORY REPORTING LIMITS

TAL confirms reporting limits on an annual or quarterly basis by performing MDL studies. The MDL is defined as the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero and is generated from the analysis of a sample in a given matrix containing the analyte (40 Code of Federal Regulations, Chapter 1, Part 136, Appendix B). The reporting limit is defined as the lowest concentration of the target analyte required to be reported. This value is based on project-specific criteria.

The laboratory reports detections that are below the reporting limit as estimated values by assigning a flag to the analytical result. This flag is assigned because the laboratory cannot accurately quantify analyte concentrations at levels below the reporting limit. For detections in the concentration range between the MDL and the reporting limit, the laboratory is confident of the analyte identification and detection but can only estimate the analyte concentration.

6.2 COMPARISON OF LABORATORY REPORTING LIMITS TO MCLS

For this assessment, the MCLs were compared to the laboratory RLs and MDLs, shown in Table C6-1. The laboratory RLs and MDLs for the investigative samples were equal to or less than the MCLs.

7.0 CONCLUSIONS

This DQS presents in specific terms the QA and QC practices used to achieve the project objectives for the Site during the January 2020 sampling event. Samples were collected and analyzed in accordance with EPA methods and using laboratory-specific QA/QC procedures. These procedures were followed to generate legally and technically defensible data.

Some of the quality issues addressed in Section 5.0 of this report resulted in qualification of investigative sample results. One sample result was qualified based on MS/MSD recoveries (Table C5-2). Two analytes in the equipment blank were qualified based on detection in the source water blank. Based on this review, the analytical data generated for the January 2020 sampling event are acceptable and adequate to fulfill program objectives and may be used to evaluate the effectiveness of the selected remedy for the Site.

8.0 REFERENCES

- Alabama Department of Environmental Management (ADEM). 2017. *Alabama Risk-Based Corrective Action Guidance Manual, Revision 3*. February.
- Matrix Environmental Services, LLC (MES). 2006. Final Corrective Measures
 Implementation Plan: Chemical Laundry and Motor Pool Area 1500, Parcel 94(7).
 McClellan, Anniston, Alabama. September. Revised September 2015, Revision 5.
- MES. 2012. Final Corrective Measures Effectiveness Report, December 2007, June 2008, December 2008, December 2009, and December 2010 Monitoring Events, Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7), McClellan, Anniston, Alabama. November.
- MES. 2013. Final Installation-Wide Sampling and Analysis Plan. December.
- U.S. Environmental Protection Agency (EPA). 1983. *Methods for Chemical Analysis of Water and Wastes (MCAWW)*. EPA 600/4-79-020. March.
- EPA. 1999. *Test Methods for Evaluating Solid Waste-Physical Chemical Methods*. Office of Solid Waste, Washington, D.C., SW-846, 3rd Edition, and Updates.
- EPA. 1994. *Guidance for the Data Quality Objectives Process*, EPA/600/R-96/055. September.
- EPA. 2017a. National Functional Guidelines for Organic Superfund Methods Data Review. January.
- EPA. 2017b. National Functional Guidelines for Inorganic Superfund Methods Data Review. January.

Table C5-1: Sample Index Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

		QC		Sample		Delivery	Laboratory Sample	
Site Name	Station Name	Code	Matrix	Date	Lab	Group	ID	Method
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW03	NS	WG	1/27/20	TALSAV	680-179731-1	680-179731-1	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	E350.1
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	E351.2
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	RSK-175
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	SW6010C
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2	SW9056A
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	MSD	WG	1/28/20	TALSAV	680-179731-1	680-179731-2 MSD	SW9056A
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	MS	WG	1/28/20	TALSAV	680-179731-1	680-179731-2 MS	SW9056A
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	E350.1
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	E351.2
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	RSK-175
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	SW6010C
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW11	FD	WG	1/28/20	TALSAV	680-179731-1	680-179731-7	SW9056A
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW12	NS	WG	1/27/20	TALSAV	680-179731-1	680-179731-3	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW13	NS	WG	1/28/20	TALSAV	680-179731-1	680-179731-4	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW15	NS	WG	1/27/20	TALSAV	680-179731-1	680-179731-5	SW8260B
PARCEL 94(7), CHEM LAUNDRY/MOTOR POOL	FTA-94-MW16	NS	WG	1/27/20	TALSAV	680-179731-1	680-179731-6	SW8260B
MCCLELLAN FIELD QC	TRIP BLANK	TB	W	1/28/20	TALSAV	680-179731-1	680-179731-8	SW8260B

Notes:

FD = Field duplicate

ID = Identification

LD = Laboratory duplicate

MS = Matrix spike

MSD = Matrix spike duplicate

NS = Normal sample

QC = Quality Control

TALSAV = TestAmerica Laboratories Inc., Savannah, Georgia

TB = Trip blank

W = Water

WG = Groundwater

Table C5-2: Summary of MS/MSD Recoveries and RPDs Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

Station Name	Matrix	Sample Date	Delivery Group	Method	TOT/ DIS	Parameter Name	MS %R	MSD %R	%R LCL	%R UCL	RPD	RPD Limit
FTA-94-MW11	WG	1/28/20	680-179731-1	SW9056A	TOT	Nitrate-N	94	95	75	125	0	30
FTA-94-MW11	WG	1/28/20	680-179731-1	SW9056A	TOT	Nitrite-N	92	93	75	125	0	40

%R = Percent recovery

LCL = Lower control limit

UCL = Upper control limit

MS = Matrix spike

MSD = Matrix spike duplicate

RPD = Relative percent difference

WG = Groundwater

2020 CMER/Appendix C_DQS/Table C5-2

Table C5-3: Field Duplicate Cross Reference Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

				Delivery	
Matrix	COC ID	Parent Station Name	Sample Date	Group	Method
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	E350.1
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	E351.2
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	RSK-175
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	SW6010C
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	SW8260B
WG	DUP340	FTA-94-MW11	1/28/20	680-179731-1	SW9056A

COC = Chain-of-Custody

ID = Identification

WG = Groundwater

Table C5-4: Summary of Field Duplicate and Investigative Sample RPDs Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)

McClellan, Anniston, Alabama

		Sample	Delivery		Total or		FD Sample	FD Lab	NS Sample	NS Lab			RPD
Station Name	Matrix	Date	Group	Method	Dissolved	Parameter Name	Value	Flag	Sample Value	Flag	Units	RPD	
FTA-94-MW11	WG	1/28/20	680-179731-	RSK-175	Z	Methane	41		58		μg/L	34.3	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW6010C	Z	Iron	20	J	17	J	μg/L	16.2	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW6010C	Z	Manganese	18		15		μg/L	18.2	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW6010C	Z	Manganese, dissolved	17		9.8	J	μg/L	53.7	50
FTA-94-MW11	WG	1/28/20	1	SW8260B	Z	Chlorobenzene	41		41		μg/L	0.0	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW8260B	Z	Cis-1,2-Dichloroethene	4.7		4.4		μg/L	6.6	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW8260B	Z	Trans-1,2-Dichloroethene	1.9		1.7		μg/L	11.1	50
FTA-94-MW11	WG	1/28/20	1	SW8260B	Z	Trichloroethene	60		54		μg/L	10.5	50
FTA-94-MW11	WG	1/28/20	680-179731-	SW8260B	Z	Vinyl Chloride	4.6		4.7	•	μg/L	2.2	50
FTA-94-MW11	WG	1/28/20	1	SW9056A	Z	Sulfate	7.2		7.1		mg/L	1.4	50

FD = Field duplicate

mg/L = milligrams per liter

NA = not applicable

 $NS = Normal\ Sample$

RPD = Relative percent difference

WG = Groundwater

Blue text and outlined indicate RPD outside acceptance criteria.

Lab Flags:

J = Estimated value. The analyte is positively identified and the concentration is less than the reporting limit (RL) but greater than the method detection limit (MDL).

2020 CMER/Appendix C_DQS/Table C5-4

Table C5-5: Summary of LCS/LCSD Recoveries and RPDs
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston, Alabama

		Delivery	Analysis	Analytical	TOT/		LCS	LCSD				RPD
Matrix	Method	Group	Date	Batch	DIS	Parameter Name	%R	%R	LCL	UCL	RPD	Limit
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1,1,2-Tetrachloroethane	107	107	80	121	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1,1-Trichloroethane	101	103	80	120	2.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1,2,2-Tetrachloroethane	107	106	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1,2-Trichloroethane	111	111	80	120	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1-Dichloroethane	105	107	80	120	1.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		1,1-Dichloroethene	92	95	76	120	3.2	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,2,3-Trichloropropane	110	109	80	123	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,2-Dibromo-3-Chloropropane	98	101	71	134	3.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,2-Dibromoethane	112	112	80	120	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,2-Dichlorobenzene	106	108	80	120	1.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,2-Dichloropropane	109	110	80	120	0.9	50
W	SW8260B	680-179731-1	2/2/20	680-605888		1,3-Dichloropropane	111	112	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		1,4-Dichlorobenzene	105	108	80	120	2.8	20
W	SW8260B	680-179731-1	2/2/20	680-605888		2-Butanone (MEK)	105	106	80	131	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		2-Hexanone	111	112	74	127	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		4-Methyl-2-Pentanone (MIBK)	111	111	76	124	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Acetone	95	95	70	135	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Acrylonitrile	106	105	80	123	0.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Benzene	103	106	80	120	2.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Bromochloromethane	102	103	80	120	1.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Bromodichloromethane	111	112	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Bromoform	106	105	74	126	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Bromomethane	104	107	62	130	3	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Carbon Disulfide	95	99	80	120	4	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Carbon Tetrachloride	98	101	76	123	3	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Chlorobenzene	104	105	80	120	1.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Chloroethane	90	93	66	135	3.3	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Chloroform	107	109	80	120	1.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Chloromethane	94	97	69	131	3.1	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Cis-1,2-Dichloroethene	107	108	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Cis-1,3-Dichloropropene	112	113	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Dibromochloromethane	112	113	80	121	0.9	20

Table C5-5: Summary of LCS/LCSD Recoveries and RPDs
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston, Alabama

		Delivery	Analysis	Analytical	TOT/		LCS	LCSD				RPD
Matrix	Method	Group	Date	Batch	DIS	Parameter Name	%R	%R	LCL	UCL	RPD	Limit
W	SW8260B	680-179731-1	2/2/20	680-605888		Dibromomethane	107	109	80	120	1.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Ethylbenzene	105	106	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Iodomethane	89	93	52	142	4.4	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Methylene Chloride	101	101	80	120	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Mtbe	103	103	80	120	0.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Styrene	109	110	80	120	0.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Tetrachloroethylene	102	105	80	121	2.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Toluene	108	110	80	113	1.8	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Trans-1,2-Dichloroethene	99	102	80	120	3.0	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Trans-1,3-Dichloropropene	115	116	80	120	0.9	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Trans-1,4-Dichloro-2-Butene	112	111	68	125	0.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Trichloroethene	103	106	80	120	2.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Trichlorofluoromethane	89	93	60	141	4.4	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Vinyl Acetate	117	118	67	135	0.9	30
W	SW8260B	680-179731-1	2/2/20	680-605888		Vinyl Chloride	89	91	71	128	2.2	20
W	SW8260B	680-179731-1	2/2/20	680-605888		Xylenes (Total)	106	107	80	120	0.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1,1,2-Tetrachloroethane	105	104	80	121	1.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1,1-Trichloroethane	101	101	80	120	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1,2,2-Tetrachloroethane	113	110	80	120	2.7	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1,2-Trichloroethane	119	114	80	120	4.3	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1-Dichloroethane	110	109	80	120	0.9	30
W	SW8260B	680-179731-1	2/5/20	680-606263		1,1-Dichloroethene	91	92	76	120	1.1	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,2,3-Trichloropropane	114	111	80	123	2.7	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,2-Dibromo-3-Chloropropane	101	105	71	134	3.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,2-Dibromoethane	116	113	80	120	2.6	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,2-Dichlorobenzene	105	105	80	120	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,2-Dichloropropane	115	112	80	120	2.6	50
W	SW8260B	680-179731-1	2/5/20	680-606263		1,3-Dichloropropane	119	114	80	120	4.3	20
W	SW8260B	680-179731-1	2/5/20	680-606263		1,4-Dichlorobenzene	103	103	80	120	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		2-Butanone (MEK)	117	114	80	131	2.6	20
W	SW8260B	680-179731-1	2/5/20	680-606263		2-Hexanone	134	131	74	127	2.3	20
W	SW8260B	680-179731-1	2/5/20	680-606263		4-Methyl-2-Pentanone (MIBK)	132	128	76	124	3.1	20

Table C5-5: Summary of LCS/LCSD Recoveries and RPDs
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston, Alabama

		Delivery	Analysis	Analytical	TOT/		LCS	LCSD				RPD
Matrix	Method	Group	Date	Batch	DIS	Parameter Name	%R	%R	LCL	UCL	RPD	Limit
W	SW8260B	680-179731-1	2/5/20	680-606263		Acetone	107	106	70	135	0.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Acrylonitrile	120	117	80	123	2.5	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Benzene	107	105	80	120	1.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Bromochloromethane	102	100	80	120	2.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Bromodichloromethane	115	112	80	120	2.6	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Bromoform	105	102	74	126	2.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Bromomethane	94	90	62	130	4.3	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Carbon Disulfide	95	95	80	120	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Carbon Tetrachloride	96	98	76	123	2.1	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Chlorobenzene	102	101	80	120	1.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Chloroethane	88	86	66	135	2.3	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Chloroform	110	109	80	120	0.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Chloromethane	91	92	69	131	1.1	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Cis-1,2-Dichloroethene	110	111	80	120	0.9	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Cis-1,3-Dichloropropene	117	113	80	120	3.5	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Dibromochloromethane	115	111	80	121	3.5	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Dibromomethane	113	109	80	120	3.6	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Ethylbenzene	104	104	80	120	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Iodomethane	74	77	52	142	4.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Methylene Chloride	102	100	80	120	2.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Mtbe	109	105	80	120	3.7	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Styrene	108	107	80	120	0.9	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Tetrachloroethylene	100	99	80	121	1.0	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Toluene	110	108	80	113	1.8	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Trans-1,2-Dichloroethene	100	99	80	120	1.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Trans-1,3-Dichloropropene	122	117	80	120	4.2	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Trans-1,4-Dichloro-2-Butene	121	120	68	125	0.8	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Trichloroethene	100	99	80	120	1.0	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Trichlorofluoromethane	83	85	60	141	2.4	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Vinyl Acetate	128	124	67	135	3.2	30
W	SW8260B	680-179731-1	2/5/20	680-606263		Vinyl Chloride	86	86	71	128	0.0	20
W	SW8260B	680-179731-1	2/5/20	680-606263		Xylenes (Total)	105	106	80	120	0.9	20

Table C5-5: Summary of LCS/LCSD Recoveries and RPDs
Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7)
McClellan, Anniston, Alabama

		Delivery	Analysis	Analytical	TOT/		LCS	LCSD		·	·	RPD
Matrix	Method	Group	Date	Batch	DIS	Parameter Name	%R	%R	LCL	UCL	RPD	Limit
W'	SW6010C	680-179731-1	1/31/20	680-605745	Dis	Iron	102	101	80	120	1.0	20
W	SW6010C	680-179731-1	1/31/20	680-605745	Dis	Manganese	102	102	80	120	0.0	20
W'	SW6010C	680-179731-1	1/31/20	680-605661		Iron	99		80	120	NA	20
W	SW6010C	680-179731-1	1/31/20	680-605661		Manganese	101		80	120	NA	20
W	RSK-175	680-179731-1	2/4/20	680-606199		Ethane	100	91	75	125	9.4	20
W	RSK-175	680-179731-1	2/4/20	680-606199		Ethene	101	92	75	125	9.3	20
W	RSK-175	680-179731-1	2/4/20	680-606199		Methane	101	93	75	125	8.2	20
W	SW9056A	680-179731-1	1/29/20	680-605521		Nitrate-N	96	96	90	110	0.0	20
W	SW9056A	680-179731-1	1/29/20	680-605521		Nitrite-N	104	103	90	110	1.0	20
W	SW9056A	680-179731-1	1/29/20	680-605522		Sulfate	109	110	90	110	0.9	20
W	E351.2	680-179731-1	2/7/20	680-606632		Nitrogen, Kjeldahl, Total	92		90	110	NA	20
W	E350.1	680-179731-1	2/13/20	680-607292		Ammonia (Nh3-N)	94		90	110	NA	20

-- = Not applicable

%R = Percent recovery

DIS = Dissolved

LCL = Lower control limit

UCL = Upper control limit

LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RPD = Relative percent difference

TOT = Total

W = Water

Blue text and outlined indicate RPD outside acceptance criteria.

Table C5-6: Summary of Surrogate Recoveries Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

					QC				
Delivery Group	Method	Station Name	Sample Date	Matrix	-	Parameter Name	%R	LCL	UCL
680-179731-1	SW8260B	FTA-94-MW03	1/27/20	WG	NS	1,2-Dichloroethane-D4	105	73	131
680-179731-1	SW8260B	FTA-94-MW03	1/27/20	WG	NS	4-Bromofluorobenzene	92	80	120
680-179731-1	SW8260B	FTA-94-MW03	1/27/20	WG	NS	Dibromofluoromethane	102	80	122
680-179731-1	SW8260B	FTA-94-MW03	1/27/20	WG	NS	Toluene-D8	100	80	120
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	NS	1,2-Dichloroethane-D4	113	73	131
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	NS	4-Bromofluorobenzene	94	80	120
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	NS	Dibromofluoromethane	101	80	122
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	NS	Toluene-D8	102	80	120
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	FD	1,2-Dichloroethane-D4	113	73	131
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	FD	4-Bromofluorobenzene	95	80	120
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	FD	Dibromofluoromethane	100	80	122
680-179731-1	SW8260B	FTA-94-MW11	1/28/20	WG	FD	Toluene-D8	102	80	120
680-179731-1	SW8260B	FTA-94-MW12	1/27/20	WG	NS	1,2-Dichloroethane-D4	106	73	131
680-179731-1	SW8260B	FTA-94-MW12	1/27/20	WG	NS	4-Bromofluorobenzene	91	80	120
680-179731-1	SW8260B	FTA-94-MW12	1/27/20	WG	NS	Dibromofluoromethane	101	80	122
680-179731-1	SW8260B	FTA-94-MW12	1/27/20	WG	NS	Toluene-D8	100	80	120
680-179731-1	SW8260B	FTA-94-MW13	1/28/20	WG	NS	1,2-Dichloroethane-D4	113	73	131
680-179731-1	SW8260B	FTA-94-MW13	1/28/20	WG	NS	4-Bromofluorobenzene	94	80	120
680-179731-1	SW8260B	FTA-94-MW13	1/28/20	WG	NS	Dibromofluoromethane	102	80	122
680-179731-1	SW8260B	FTA-94-MW13	1/28/20	WG	NS	Toluene-D8	102	80	120
680-179731-1	SW8260B	FTA-94-MW15	1/27/20	WG	NS	1,2-Dichloroethane-D4	107	73	131
680-179731-1	SW8260B	FTA-94-MW15	1/27/20	WG	NS	4-Bromofluorobenzene	92	80	120
680-179731-1	SW8260B	FTA-94-MW15	1/27/20	WG	NS	Dibromofluoromethane	102	80	122
680-179731-1	SW8260B	FTA-94-MW15	1/27/20	WG	NS	Toluene-D8	100	80	120
680-179731-1	SW8260B	FTA-94-MW16	1/27/20	WG	NS	1,2-Dichloroethane-D4	113	73	131
680-179731-1	SW8260B	FTA-94-MW16	1/27/20	WG	NS	4-Bromofluorobenzene	93	80	120
680-179731-1	SW8260B	FTA-94-MW16	1/27/20	WG	NS	Dibromofluoromethane	100	80	122
680-179731-1	SW8260B	FTA-94-MW16	1/27/20	WG	NS	Toluene-D8	100	80	120

Table C5-6: Summary of Surrogate Recoveries Former Chemical Laundry and Motor Pool Area 1500, Parcel 94(7) McClellan, Anniston, Alabama

				QC				
Delivery Group	Method	Station Name	Sample Date Matrix	Code	Parameter Name	%R	LCL	UCL
Notes:								
EB = Equipment bla	ank							
FD = Field duplicate	e							

LCL = Lower control limit NS = Normal sample

QC = Quality control

%R = Percent recovery

TB = Trip blank

UCL = Upper control limit

W = Water

WG = Groundwater

WS = Source water

Table C6-1: Reporting Limits and Method Detection Limits Compared to MCLs Former Chemical Laundry, Parcel 94(7) McClellan, Anniston, Alabama

						MCL
Matrix	Method	Parameter Name	MDL	RL	Units	*
WG	SW8260B	1,1,1-Trichloroethane	0.37	1	μg/L	200
WG	SW8260B	1,1,2,2-Tetrachloroethane	0.62	1	μg/L	
WG	SW8260B	1,1,2-Trichloroethane	0.33	1	μg/L	5
WG	SW8260B	1,1-Dichloroethane	0.38	1	μg/L	
WG	SW8260B	1,1-Dichloroethene	0.36	1	μg/L	7
WG	SW8260B	1,2-Dichloroethane	0.2	1	μg/L	5
WG	SW8260B	1,2-Dichloropropane	0.2	1	μg/L	5
WG	SW8260B	2-Butanone (MEK)	4	10	μg/L	
WG	SW8260B	2-Hexanone	2.3	10	μg/L	
WG	SW8260B	4-Methyl-2-Pentanone (MIBK)	4	10	μg/L	
WG	SW8260B	Acetone	5	10	μg/L	
WG	SW8260B	Benzene	0.2	1	μg/L	5
WG	SW8260B	Bromodichloromethane	0.2	1	μg/L	80
WG	SW8260B	Bromoform	0.3	1	μg/L	80
WG	SW8260B	Bromomethane	0.3	2	μg/L	
WG	SW8260B	Carbon Disulfide	0.2	1	μg/L	
WG	SW8260B	Carbon Tetrachloride	0.2	1	μg/L	5
WG	SW8260B	Chlorobenzene	0.2	1	μg/L	100
WG	SW8260B	Chloroform	0.2	1	μg/L	80
WG	SW8260B	Chloromethane	0.3	2	μg/L	
WG	SW8260B	Cis-1,2-Dichloroethene	0.2	1	μg/L	70
WG	SW8260B	Dibromochloromethane	0.2	1	μg/L	80
WG	SW8260B	Ethylbenzene	0.2	1	μg/L	700
WG	SW8260B	Methylene Chloride	0.5	2	μg/L	5
WG	SW8260B	Styrene	0.2	1	μg/L	100
WG	SW8260B	Tetrachloroethene	0.2	1	μg/L	5
WG	SW8260B	Toluene	0.2	1	μg/L	1000
WG	SW8260B	Trans-1,2-Dichloroethene	0.2	1	μg/L	100
WG	SW8260B	Trichloroethene	0.48	1	μg/L	5
WG	SW8260B	Vinyl Acetate	0.81	2	μg/L	
WG	SW8260B	Vinyl Chloride	0.5	1	μg/L	2
WG	SW8260B	Xylenes (Total)	0.23	1	μg/L	10000
WG	SW6010B	Iron	0.017	0.05	mg/L	
WG	SW6010B	Manganese	0.001	0.01	mg/L	
WG	SW9056	Nitrate-N	0.023	0.05	mg/L	10
WG	SW9056	Nitrite-N	0.023	0.05	mg/L	1

Notes:

-- = MCL not established.

Indicates the limit is greater than the MCL.

MCL = Maximum Contaminant Level

MDL = Method detection limit

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

RL = Reporting limit

*MCL is United States Environmental Protection Agency MCL from

Reginal Screening Levels for Chemical Contaminants at Superfund Cites, March 5, 2020.

ATTACHMENT C1

Laboratory Data Forms

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-179731-1

Client Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

or:

Matrix Environmental Services, LLC 1601 Blake Street Suite 200 Denver, Colorado 80202

Attn: Ms. Betty Van Pelt

Authorized for release by: 2/14/2020 4:04:42 PM

Jon Lawhon, Project Manager I (912)250-0283

jon.lawhon@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

7

8

9

10

11

Definitions/Glossary

Client: Matrix Environmental Services, LLC Job ID: 680-179731-1

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS or LCSD is outside acceptance limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) 100 Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin)

NC Not Calculated

ML

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Savannah

Page 2 of 37

Sample Summary

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Ass
680-179731-1	FTA-94-MW03	Water	01/27/20 10:06	01/29/20 09:00	_
680-179731-2	FTA-94-MW11	Water	01/28/20 11:56	01/29/20 09:00	
680-179731-3	FTA-94-MW12	Water	01/27/20 11:31	01/29/20 09:00	
680-179731-4	FTA-94-MW13	Water	01/28/20 10:16	01/29/20 09:00	
680-179731-5	FTA-94-MW15	Water	01/27/20 13:36	01/29/20 09:00	
680-179731-6	FTA-94-MW16	Water	01/27/20 14:51	01/29/20 09:00	
680-179731-7	DUP340	Water	01/28/20 00:00	01/29/20 09:00	
680-179731-8	TB547	Water	01/28/20 13:30	01/29/20 09:00	

Job ID: 680-179731-1

3

Λ

6

8

9

10

11

Case Narrative

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Matrix Environmental Services, LLC

Project: Parcel 94(7), Chem Laundry/Motor Pool

Report Number: 680-179731-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 1/29/2020 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.0° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples FTA-94-MW03 (680-179731-1), FTA-94-MW11 (680-179731-2), FTA-94-MW12 (680-179731-3), FTA-94-MW13 (680-179731-4), FTA-94-MW15 (680-179731-5), FTA-94-MW16 (680-179731-6), DUP340 (680-179731-7) and TB547 (680-179731-8) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/02/2020 and 02/05/2020.

Method 8260B: Surrogate recovery was outside acceptance limits for the following matrix spike duplicate (MSD) sample: (680-179796-D-5 MSD). The parent sample's surrogate recovery was within limits. The MSD sample has been qualified and reported.

Method 8260B: The matrix spike duplicate (MSD) recoveries for analytical batch 680-605888 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) precision for analytical batch 680-605888 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8260B: The laboratory control sample (LCS) for analytical batch 680-606263 recovered outside control limits for the following analytes: 2-Hexanone, 4-Methyl-2-pentanone (MIBK) and trans-1,3-Dichloropropene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260B: The laboratory control sample duplicate (LCSD) for analytical batch 680-606263 recovered outside control limits for the following analytes: 2-Hexanone and 4-Methyl-2-pentanone (MIBK). These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-606263.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED GASES

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/04/2020.

Job ID: 680-179731-1

3

9

10

11

Case Narrative

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Job ID: 680-179731-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP) - DISSOLVED

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for Metals (ICP) - Dissolved in accordance with EPA SW-846 Method 6010C. The samples were prepared and analyzed on 01/31/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 01/30/2020 and analyzed on 01/31/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

AMMONIA

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for ammonia in accordance with EPA Method 350.1. The samples were analyzed on 02/13/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL KJELDAHL NITROGEN (TKN)

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for total kjeldahl nitrogen (TKN) in accordance with EPA Method 351.2. The samples were prepared on 02/06/2020 and analyzed on 02/07/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9056 ANIONS

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for 9056 Anions in accordance with SW 846 9056. The samples were analyzed on 01/29/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS BY IC (NITRATE/NITRITE)

Samples FTA-94-MW11 (680-179731-2) and DUP340 (680-179731-7) were analyzed for Anions by IC (Nitrate/Nitrite) in accordance with EPA SW-846 Method 9056A. The samples were analyzed on 01/29/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

5

6

9

10

11

Client Sample Results

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW03

Date Collected: 01/27/20 10:06 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-1

Matrix: Water

Job ID: 680-179731-1

Matrix

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/02/20 15:48	
Acrylonitrile	10	U	20	10	ug/L			02/02/20 15:48	1
Benzene	0.43	U	1.0	0.43	ug/L			02/02/20 15:48	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/02/20 15:48	1
Bromodichloromethane	0.44	U	1.0	0.44	_			02/02/20 15:48	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/02/20 15:48	1
Bromomethane	2.5		5.0		ug/L			02/02/20 15:48	1
2-Butanone (MEK)	3.4	U	10		ug/L			02/02/20 15:48	1
Carbon disulfide	1.0	U	2.0		ug/L			02/02/20 15:48	1
Carbon tetrachloride	0.33	U	1.0	0.33	-			02/02/20 15:48	1
Chlorobenzene	0.26	U	1.0	0.26				02/02/20 15:48	1
Chloroethane	2.5		5.0		ug/L			02/02/20 15:48	
Chloroform	0.50		1.0	0.50	-			02/02/20 15:48	1
Chloromethane	0.40		1.0	0.40	-			02/02/20 15:48	1
cis-1,2-Dichloroethene	0.41		1.0	0.41	-			02/02/20 15:48	1
cis-1,3-Dichloropropene	0.40		1.0		ug/L			02/02/20 15:48	
Dibromochloromethane	0.32		1.0	0.32	-			02/02/20 15:48	
1,2-Dibromo-3-Chloropropane	1.1		5.0		ug/L			02/02/20 15:48	,
1,2-Dibromoethane	0.44		1.0	0.44	-			02/02/20 15:48	
Dibromomethane	0.44		1.0	0.44	-			02/02/20 15:48	-
	0.33		1.0	0.37	-			02/02/20 15:48	,
1,2-Dichlorobenzene 1.4-Dichlorobenzene	0.37		1.0		ug/L ug/L			02/02/20 15:48	
,					-				
1,1-Dichloroethane	0.38		1.0		ug/L			02/02/20 15:48	1
1,2-Dichloroethane	0.50		1.0	0.50	-			02/02/20 15:48	
1,1-Dichloroethene	0.36		1.0		ug/L			02/02/20 15:48	1
1,2-Dichloropropane	0.67		1.0	0.67	-			02/02/20 15:48	1
1,3-Dichloropropane	0.34		1.0	0.34	-			02/02/20 15:48	
Ethylbenzene	0.33		1.0		ug/L			02/02/20 15:48	1
2-Hexanone	2.0		10		ug/L			02/02/20 15:48	1
lodomethane	5.0		10		ug/L			02/02/20 15:48	
Methylene Chloride	2.5		5.0		ug/L			02/02/20 15:48	1
4-Methyl-2-pentanone (MIBK)	2.1		10		ug/L			02/02/20 15:48	1
Methyl tert-butyl ether	0.30		10	0.30	-			02/02/20 15:48	1
Styrene	0.27		1.0	0.27	-			02/02/20 15:48	1
1,1,1,2-Tetrachloroethane	0.37		1.0	0.37				02/02/20 15:48	1
1,1,2,2-Tetrachloroethane	0.62		1.0		ug/L			02/02/20 15:48	1
Tetrachloroethylene	0.74		1.0		ug/L			02/02/20 15:48	1
Toluene	0.48		1.0		ug/L			02/02/20 15:48	1
trans-1,4-Dichloro-2-butene	0.51		2.0		ug/L			02/02/20 15:48	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			02/02/20 15:48	1
trans-1,3-Dichloropropene	0.42	U	1.0		ug/L			02/02/20 15:48	1
1,1,1-Trichloroethane	0.37	U	1.0		ug/L			02/02/20 15:48	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/02/20 15:48	1
Trichloroethene	0.69	J	1.0		ug/L			02/02/20 15:48	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/02/20 15:48	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/02/20 15:48	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/02/20 15:48	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			02/02/20 15:48	1
Xylenes, Total	0.23		1.0		ug/L			02/02/20 15:48	1

Eurofins TestAmerica, Savannah

Page 6 of 37 2/14/2020

Client Sample Results

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW03

Date Collected: 01/27/20 10:06 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-1

Matrix: Water

Job ID: 680-179731-1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	80 - 120	02/02/20 15:48	1
Dibromofluoromethane (Surr)	102	80 - 122	02/02/20 15:48	1
1,2-Dichloroethane-d4 (Surr)	105	73 - 131	02/02/20 15:48	1
Toluene-d8 (Surr)	100	80 - 120	02/02/20 15:48	1

Client Sample ID: FTA-94-MW11 Lab Sample ID: 680-179731-2

Date Collected: 01/28/20 11:56 Matrix: Water

Date Received: 01/29/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/05/20 15:53	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 15:53	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 15:53	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 15:53	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 15:53	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 15:53	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 15:53	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 15:53	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 15:53	1
Carbon tetrachloride	0.33	Ü	1.0	0.33	ug/L			02/05/20 15:53	1
Chlorobenzene	41		1.0	0.26	ug/L			02/05/20 15:53	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 15:53	1
Chloroform	0.50	Ü	1.0	0.50	ug/L			02/05/20 15:53	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 15:53	1
cis-1,2-Dichloroethene	4.4		1.0	0.41	ug/L			02/05/20 15:53	1
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/05/20 15:53	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/05/20 15:53	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/05/20 15:53	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/05/20 15:53	1
Dibromomethane	0.35	U	1.0	0.35	•			02/05/20 15:53	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/05/20 15:53	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/05/20 15:53	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/05/20 15:53	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/05/20 15:53	1
1,1-Dichloroethene	0.36		1.0	0.36	ug/L			02/05/20 15:53	1
1,2-Dichloropropane	0.67	U	1.0	0.67				02/05/20 15:53	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/05/20 15:53	1
Ethylbenzene	0.33		1.0	0.33	ug/L			02/05/20 15:53	1
2-Hexanone	2.0	U *	10	2.0	ug/L			02/05/20 15:53	1
Iodomethane	5.0		10	5.0	ug/L			02/05/20 15:53	1
Methylene Chloride	2.5	U	5.0		ug/L			02/05/20 15:53	1
4-Methyl-2-pentanone (MIBK)	2.1	U *	10		ug/L			02/05/20 15:53	1
Methyl tert-butyl ether	0.30	U	10	0.30	•			02/05/20 15:53	1
Styrene	0.27	U	1.0	0.27	ug/L			02/05/20 15:53	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	•			02/05/20 15:53	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62				02/05/20 15:53	1
Tetrachloroethylene	0.74		1.0		ug/L			02/05/20 15:53	· · · · · · · 1
Toluene	0.48		1.0	0.48				02/05/20 15:53	1
trans-1,4-Dichloro-2-butene	0.51		2.0	0.51	•			02/05/20 15:53	1

Eurofins TestAmerica, Savannah

Page 7 of 37 2/14/2020

4

5

7

4 0

11

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW11

Date Collected: 01/28/20 11:56 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-2

Matrix: Water

Job ID: 680-179731-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	1.7		1.0	0.37	ug/L			02/05/20 15:53	1
trans-1,3-Dichloropropene	0.42	U *	1.0	0.42	ug/L			02/05/20 15:53	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 15:53	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/05/20 15:53	1
Trichloroethene	54		1.0	0.48	ug/L			02/05/20 15:53	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/05/20 15:53	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/05/20 15:53	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/05/20 15:53	1
Vinyl chloride	4.7		1.0	0.50	ug/L			02/05/20 15:53	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			02/05/20 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120			-		02/05/20 15:53	1
Dibromofluoromethane (Surr)	101		80 - 122					02/05/20 15:53	1
1,2-Dichloroethane-d4 (Surr)	113		73 - 131					02/05/20 15:53	1
Toluene-d8 (Surr)	102		80 - 120					02/05/20 15:53	1

Method: RSK-175 - Dissolved Gases (GC)											
	Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Methane	58		0.58	0.29	ug/L			02/04/20 18:03	1	
	Ethane	0.55 L	J	1.1	0.55	ug/L			02/04/20 18:03	1	
	Ethene	0.50 L	J	1.0	0.50	ug/L			02/04/20 18:03	1	

Method: 9056A - Anions, Ion Chromatography											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Nitrate as N	0.023	U	0.050	0.023	mg/L			01/29/20 16:26	1		
Sulfate	7.1		1.0	0.40	mg/L			01/29/20 20:49	1		
Nitrite as N	0.023	U	0.050	0.023	mg/L			01/29/20 16:26	1		

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	17	J	50	17	ug/L		01/30/20 14:56	01/31/20 16:17	1
Manganese	15		10	1.0	ug/L		01/30/20 14:56	01/31/20 16:17	1

Method: 6010C - Metals (ICP) - Dissolved										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Dissolved Iron	17	U	50	17	ug/L		01/31/20 09:36	01/31/20 19:59	1
	Dissolved Manganese	9.8	J	10	1.0	ug/L		01/31/20 09:36	01/31/20 19:59	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	0.10	U	0.25	0.10	mg/L			02/13/20 09:49	1
Nitrogen, Kjeldahl	0.10	U	0.20	0.10	mg/L		02/06/20 16:26	02/07/20 09:31	1

Client Sample ID: FTA-94-MW12 Lab Sample ID: 680-179731-3 Date Collected: 01/27/20 11:31 **Matrix: Water**

Date Received: 01/29/20 09:00

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0 U	10	7.0 ug/L			02/02/20 16:11	1

Eurofins TestAmerica, Savannah

Page 8 of 37

Client Sample Results

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW12

Date Collected: 01/27/20 11:31 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-3

Matrix: Water

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acrylonitrile	10	U	20	10	ug/L			02/02/20 16:11	1
Benzene	0.43	U	1.0	0.43	ug/L			02/02/20 16:11	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/02/20 16:11	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/02/20 16:11	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/02/20 16:11	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/02/20 16:11	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/02/20 16:11	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/02/20 16:11	1
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/02/20 16:11	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/02/20 16:11	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/02/20 16:11	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/02/20 16:11	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/02/20 16:11	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/02/20 16:11	1
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/02/20 16:11	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/02/20 16:11	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0		ug/L			02/02/20 16:11	1
1,2-Dibromoethane	0.44	U	1.0		ug/L			02/02/20 16:11	1
Dibromomethane	0.35	U	1.0		ug/L			02/02/20 16:11	1
1,2-Dichlorobenzene	0.37	U	1.0		ug/L			02/02/20 16:11	1
1,4-Dichlorobenzene	0.46	U	1.0		ug/L			02/02/20 16:11	1
1,1-Dichloroethane	0.38	U	1.0		ug/L			02/02/20 16:11	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/02/20 16:11	1
1,1-Dichloroethene	0.36	U	1.0		ug/L			02/02/20 16:11	1
1,2-Dichloropropane	0.67	U	1.0		ug/L			02/02/20 16:11	1
1,3-Dichloropropane	0.34	U	1.0		ug/L			02/02/20 16:11	1
Ethylbenzene	0.33	U	1.0		ug/L			02/02/20 16:11	1
2-Hexanone	2.0	U	10		ug/L			02/02/20 16:11	1
lodomethane	5.0	U	10		ug/L			02/02/20 16:11	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/02/20 16:11	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10		ug/L			02/02/20 16:11	1
Methyl tert-butyl ether	0.30	U	10		ug/L			02/02/20 16:11	1
Styrene	0.27	U	1.0		ug/L			02/02/20 16:11	1
1,1,2-Tetrachloroethane	0.37	U	1.0		ug/L			02/02/20 16:11	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0		ug/L			02/02/20 16:11	1
Tetrachloroethylene	0.74	U	1.0		ug/L			02/02/20 16:11	1
Toluene	0.48		1.0		ug/L			02/02/20 16:11	1
trans-1,4-Dichloro-2-butene	0.51		2.0		ug/L			02/02/20 16:11	1
trans-1,2-Dichloroethene	0.37		1.0		ug/L			02/02/20 16:11	1
trans-1,3-Dichloropropene	0.42		1.0		ug/L			02/02/20 16:11	1
1,1,1-Trichloroethane	0.37		1.0		ug/L			02/02/20 16:11	1
1,1,2-Trichloroethane	0.33		1.0		ug/L			02/02/20 16:11	1
Trichloroethene	0.48		1.0		ug/L			02/02/20 16:11	1
Trichlorofluoromethane	0.42		1.0		ug/L			02/02/20 16:11	1
1,2,3-Trichloropropane	0.39		1.0		ug/L			02/02/20 16:11	· · · · · · · · · · · · · · · · · · ·
Vinyl acetate	0.81		2.0		ug/L			02/02/20 16:11	1
Vinyl chloride	0.50		1.0		ug/L			02/02/20 16:11	1
Xylenes, Total	0.23		1.0		ug/L			02/02/20 16:11	· · · · · · · · · · · · · · · · · · ·

Eurofins TestAmerica, Savannah

Page 9 of 37 2/14/2020

Client Sample Results

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW12

Date Collected: 01/27/20 11:31 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-3

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	80 - 120		02/02/20 16:11	1
Dibromofluoromethane (Surr)	101	80 - 122		02/02/20 16:11	1
1,2-Dichloroethane-d4 (Surr)	106	73 - 131		02/02/20 16:11	1
Toluene-d8 (Surr)	100	80 - 120		02/02/20 16:11	1

Client Sample ID: FTA-94-MW13 Lab Sample ID: 680-179731-4

Date Collected: 01/28/20 10:16 Matrix: Water

Date Received: 01/29/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/05/20 16:17	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 16:17	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 16:17	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 16:17	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 16:17	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 16:17	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 16:17	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 16:17	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 16:17	1
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/05/20 16:17	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/05/20 16:17	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 16:17	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/05/20 16:17	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 16:17	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/05/20 16:17	1
cis-1,3-Dichloropropene	0.40	Ü	1.0	0.40	ug/L			02/05/20 16:17	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/05/20 16:17	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/05/20 16:17	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/05/20 16:17	1
Dibromomethane	0.35	U	1.0	0.35	ug/L			02/05/20 16:17	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/05/20 16:17	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/05/20 16:17	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/05/20 16:17	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/05/20 16:17	1
1,1-Dichloroethene	0.36		1.0	0.36	ug/L			02/05/20 16:17	1
1,2-Dichloropropane	0.67	U	1.0	0.67				02/05/20 16:17	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/05/20 16:17	1
Ethylbenzene	0.33		1.0	0.33	ug/L			02/05/20 16:17	1
2-Hexanone	2.0	U *	10		ug/L			02/05/20 16:17	1
lodomethane	5.0	U	10		ug/L			02/05/20 16:17	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/05/20 16:17	1
4-Methyl-2-pentanone (MIBK)	2.1	U *	10	2.1	•			02/05/20 16:17	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			02/05/20 16:17	1
Styrene	0.27	U	1.0	0.27	ug/L			02/05/20 16:17	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	-			02/05/20 16:17	1
1,1,2,2-Tetrachloroethane	0.62		1.0		ug/L			02/05/20 16:17	1
Tetrachloroethylene	0.74		1.0		ug/L			02/05/20 16:17	1
Toluene	0.48	_	1.0	0.48	-			02/05/20 16:17	1
trans-1,4-Dichloro-2-butene	0.51		2.0		ug/L			02/05/20 16:17	1

Eurofins TestAmerica, Savannah

2/14/2020

4

5

7

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW13

Date Collected: 01/28/20 10:16 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-4

Matrix: Water

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			02/05/20 16:17	1
trans-1,3-Dichloropropene	0.42	U *	1.0	0.42	ug/L			02/05/20 16:17	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 16:17	1
1,1,2-Trichloroethane	0.33	Ü	1.0	0.33	ug/L			02/05/20 16:17	1
Trichloroethene	0.48	U	1.0	0.48	ug/L			02/05/20 16:17	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/05/20 16:17	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/05/20 16:17	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/05/20 16:17	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			02/05/20 16:17	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			02/05/20 16:17	1
Ayleries, Total	0.23	U	1.0	0.23	ug/L			02/03/20 10.	1 /

Surrogate	%Recovery	Qualifier	Limits	Prepar	red Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120		02/05/20 16:17	1
Dibromofluoromethane (Surr)	102		80 - 122		02/05/20 16:17	1
1,2-Dichloroethane-d4 (Surr)	113		73 - 131		02/05/20 16:17	1
Toluene-d8 (Surr)	102		80 - 120		02/05/20 16:17	1

Client Sample ID: FTA-94-MW15

Date Collected: 01/27/20 13:36 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/02/20 16:34	1
Acrylonitrile	10	U	20	10	ug/L			02/02/20 16:34	1
Benzene	0.43	U	1.0	0.43	ug/L			02/02/20 16:34	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/02/20 16:34	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/02/20 16:34	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/02/20 16:34	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/02/20 16:34	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/02/20 16:34	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/02/20 16:34	1
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/02/20 16:34	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/02/20 16:34	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/02/20 16:34	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/02/20 16:34	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/02/20 16:34	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/02/20 16:34	1
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/02/20 16:34	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/02/20 16:34	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/02/20 16:34	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/02/20 16:34	1
Dibromomethane	0.35	U	1.0	0.35	ug/L			02/02/20 16:34	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/02/20 16:34	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/02/20 16:34	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/02/20 16:34	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/02/20 16:34	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			02/02/20 16:34	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			02/02/20 16:34	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/02/20 16:34	1

 $Eurofins\ Test America,\ Savannah$

Page 11 of 37

9

3

5

7

9

11

12

2/14/2020

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW15

Date Collected: 01/27/20 13:36 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-5

Matrix: Water

Method: 8260B - Volatile	Organic Compounds ((GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.33	U	1.0	0.33	ug/L			02/02/20 16:34	1
2-Hexanone	2.0	U	10	2.0	ug/L			02/02/20 16:34	1
lodomethane	5.0	U	10	5.0	ug/L			02/02/20 16:34	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/02/20 16:34	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10	2.1	ug/L			02/02/20 16:34	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			02/02/20 16:34	1
Styrene	0.27	U	1.0	0.27	ug/L			02/02/20 16:34	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			02/02/20 16:34	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62	ug/L			02/02/20 16:34	1
Tetrachloroethylene	0.74	U	1.0	0.74	ug/L			02/02/20 16:34	1
Toluene	0.48	U	1.0	0.48	ug/L			02/02/20 16:34	1
trans-1,4-Dichloro-2-butene	0.51	U	2.0	0.51	ug/L			02/02/20 16:34	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			02/02/20 16:34	1
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			02/02/20 16:34	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			02/02/20 16:34	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/02/20 16:34	1
Trichloroethene	0.48	U	1.0	0.48	ug/L			02/02/20 16:34	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/02/20 16:34	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/02/20 16:34	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/02/20 16:34	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			02/02/20 16:34	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			02/02/20 16:34	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	80 - 120		02/02/20 16:34	1
Dibromofluoromethane (Surr)	102	80 - 122		02/02/20 16:34	1
1,2-Dichloroethane-d4 (Surr)	107	73 - 131		02/02/20 16:34	1
Toluene-d8 (Surr)	100	80 - 120		02/02/20 16:34	1

Client Sample ID: FTA-94-MW16

Date Collected: 01/27/20 14:51 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-6

Matrix: Water

Analyte	Popult Qualifier
Method: 8260B - Volatile O	rganic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U –	10	7.0	ug/L			02/05/20 16:40	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 16:40	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 16:40	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 16:40	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 16:40	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 16:40	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 16:40	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 16:40	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 16:40	1
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/05/20 16:40	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/05/20 16:40	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 16:40	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/05/20 16:40	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 16:40	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/05/20 16:40	1

Eurofins TestAmerica, Savannah

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW16

Date Collected: 01/27/20 14:51 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/05/20 16:40	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/05/20 16:40	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/05/20 16:40	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/05/20 16:40	1
Dibromomethane	0.35	U	1.0	0.35	ug/L			02/05/20 16:40	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/05/20 16:40	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/05/20 16:40	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/05/20 16:40	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/05/20 16:40	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			02/05/20 16:40	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			02/05/20 16:40	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/05/20 16:40	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			02/05/20 16:40	1
2-Hexanone	2.0	U *	10	2.0	ug/L			02/05/20 16:40	1
Iodomethane	5.0	U	10	5.0	ug/L			02/05/20 16:40	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/05/20 16:40	1
4-Methyl-2-pentanone (MIBK)	2.1	U *	10	2.1	ug/L			02/05/20 16:40	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			02/05/20 16:40	1
Styrene	0.27	U	1.0	0.27	ug/L			02/05/20 16:40	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 16:40	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62	ug/L			02/05/20 16:40	1
Tetrachloroethylene	0.74	U	1.0	0.74	ug/L			02/05/20 16:40	1
Toluene	0.48	U	1.0	0.48	ug/L			02/05/20 16:40	1
trans-1,4-Dichloro-2-butene	0.51	U	2.0	0.51	ug/L			02/05/20 16:40	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			02/05/20 16:40	1
trans-1,3-Dichloropropene	0.42	U *	1.0	0.42	ug/L			02/05/20 16:40	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 16:40	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/05/20 16:40	1
Trichloroethene	0.48	U	1.0	0.48				02/05/20 16:40	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/05/20 16:40	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/05/20 16:40	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/05/20 16:40	1
Vinyl chloride	0.50	U	1.0	0.50	-			02/05/20 16:40	1
Xylenes, Total	0.23	U	1.0	0.23	-			02/05/20 16:40	1
Surrogate	%Recovery	Qualifier	l imite				Propared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	80 - 120		02/05/20 16:40	1
Dibromofluoromethane (Surr)	100	80 - 122		02/05/20 16:40	1
1,2-Dichloroethane-d4 (Surr)	113	73 - 131		02/05/20 16:40	1
Toluene-d8 (Surr)	100	80 - 120		02/05/20 16:40	1

Client Sample ID: DUP340 Date Collected: 01/28/20 00:00 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-7

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

wethou. 6260b - Volatile Organic Compounds (GC/WS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/05/20 17:03	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 17:03	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 17:03	1

Eurofins TestAmerica, Savannah

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: DUP340

Xylenes, Total

Date Collected: 01/28/20 00:00 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-7

Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 17:03	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 17:03	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 17:03	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 17:03	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 17:03	•
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 17:03	•
Carbon tetrachloride	0.33	Ü	1.0	0.33	ug/L			02/05/20 17:03	
Chlorobenzene	41		1.0	0.26	ug/L			02/05/20 17:03	
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 17:03	
Chloroform	0.50	U	1.0	0.50	ug/L			02/05/20 17:03	· · · · · · · · ·
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 17:03	
cis-1,2-Dichloroethene	4.7		1.0	0.41	ug/L			02/05/20 17:03	
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/05/20 17:03	• • • • • • • •
Dibromochloromethane	0.32	U	1.0		ug/L			02/05/20 17:03	
1,2-Dibromo-3-Chloropropane	1.1	U	5.0		ug/L			02/05/20 17:03	
1,2-Dibromoethane	0.44		1.0		ug/L			02/05/20 17:03	
Dibromomethane	0.35	U	1.0		ug/L			02/05/20 17:03	
1,2-Dichlorobenzene	0.37	U	1.0		ug/L			02/05/20 17:03	
1,4-Dichlorobenzene	0.46	U	1.0		ug/L			02/05/20 17:03	
1,1-Dichloroethane	0.38	U	1.0		ug/L			02/05/20 17:03	
1,2-Dichloroethane	0.50	U	1.0		ug/L			02/05/20 17:03	
1,1-Dichloroethene	0.36		1.0		ug/L			02/05/20 17:03	
1,2-Dichloropropane	0.67		1.0		ug/L			02/05/20 17:03	
1,3-Dichloropropane	0.34		1.0		ug/L			02/05/20 17:03	
Ethylbenzene	0.33		1.0		ug/L			02/05/20 17:03	
2-Hexanone		U *	10		ug/L			02/05/20 17:03	
lodomethane	5.0	U	10		ug/L			02/05/20 17:03	
Methylene Chloride	2.5		5.0		ug/L			02/05/20 17:03	
4-Methyl-2-pentanone (MIBK)		U *	10		ug/L			02/05/20 17:03	
Methyl tert-butyl ether	0.30		10		ug/L			02/05/20 17:03	
Styrene	0.27		1.0		ug/L			02/05/20 17:03	
1,1,1,2-Tetrachloroethane	0.37		1.0		ug/L			02/05/20 17:03	
1,1,2,2-Tetrachloroethane	0.62		1.0		ug/L			02/05/20 17:03	
Tetrachloroethylene	0.74		1.0		ug/L			02/05/20 17:03	
Toluene	0.48		1.0		ug/L			02/05/20 17:03	
trans-1,4-Dichloro-2-butene	0.51		2.0	0.51	-			02/05/20 17:03	
trans-1,2-Dichloroethene	1.9		1.0		ug/L			02/05/20 17:03	
trans-1,3-Dichloropropene	0.42	U*	1.0		ug/L			02/05/20 17:03	
1,1,1-Trichloroethane	0.42		1.0		ug/L			02/05/20 17:03	
1,1,2-Trichloroethane	0.33		1.0		ug/L			02/05/20 17:03	
Trichloroethene	60	_	1.0		ug/L			02/05/20 17:03	
Trichlorofluoromethane	0.42	U	1.0		ug/L			02/05/20 17:03	
1,2,3-Trichloropropane	0.39		1.0		ug/L			02/05/20 17:03	
Vinyl acetate	0.39		2.0		ug/L ug/L			02/05/20 17:03	
Vinyl chloride	4.6	J	1.0		ug/L			02/05/20 17:03	
VIII VIII CIII CIII CIII CIII CIII CIII	4.0		1.0	0.50	ug/L			02/05/20 17:05	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120		02/05/20 17:03	1
Dibromofluoromethane (Surr)	100		80 - 122		02/05/20 17:03	1

1.0

0.23 ug/L

0.23 U

Eurofins TestAmerica, Savannah

02/05/20 17:03

Page 14 of 37

2/14/2020

Job ID: 680-179731-1

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: DUP340

Date Received: 01/29/20 09:00

Lab Sample ID: 680-179731-7 Date Collected: 01/28/20 00:00

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		73 - 131			02/05/20 17:03	1
Toluene-d8 (Surr)	102		80 - 120			02/05/20 17:03	1

Method: RSK-175 - Dissolved Gases (GC)

mothod: Nort-170 - Dissolve	,a Gases (GG)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	41		0.58	0.29	ug/L			02/04/20 18:16	1
Ethane	0.55	U	1.1	0.55	ug/L			02/04/20 18:16	1
Ethene	0.50	U	1.0	0.50	ug/L			02/04/20 18:16	1

Method: 9056A - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.025	J	0.050	0.023	mg/L			01/29/20 18:01	1
Sulfate	7.2		1.0	0.40	mg/L			01/29/20 21:02	1
Nitrite as N	0.023	U	0.050	0.023	mg/L			01/29/20 18:01	1

Method: 6010C - Metals (ICP)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	20	J	50	17	ug/L		01/30/20 14:56	01/31/20 16:22	1
Manganese	18		10	1.0	ug/L		01/30/20 14:56	01/31/20 16:22	1

Method: 6010C - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Iron	17	U	50	17	ug/L		01/31/20 09:36	01/31/20 20:14	1
Dissolved Manganese	17		10	1.0	ug/L		01/31/20 09:36	01/31/20 20:14	1

General Chemistry

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	0.10	U	0.25	0.10	mg/L			02/13/20 09:49	1
Nitrogen, Kjeldahl	0.10 l	U	0.20	0.10	mg/L		02/06/20 16:26	02/07/20 09:27	1

Lab Sample ID: 680-179731-8 **Client Sample ID: TB547** Date Collected: 01/28/20 13:30

Date Received: 01/29/20 09:00

Method: 8260B - Volatile Organic Compounds	(CC/MS)	۱
Method: 0200D - Volatile Organic Compounds	(CC/IVIS)	,

Method: 8260B - Volatile C Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U –	10	7.0	ug/L			02/05/20 14:43	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 14:43	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 14:43	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 14:43	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 14:43	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 14:43	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 14:43	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 14:43	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 14:43	1
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/05/20 14:43	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/05/20 14:43	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 14:43	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/05/20 14:43	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 14:43	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/05/20 14:43	1

Eurofins TestAmerica, Savannah

2/14/2020

Page 15 of 37

Client Sample Results

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Lab Sample ID: 680-179731-8

Client Sample ID: TB547

Date Collected: 01/28/20 13:30

Date Received: 01/29/20 09:00

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Matrix: Water

Job ID: 680-179731-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/05/20 14:43	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/05/20 14:43	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/05/20 14:43	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/05/20 14:43	1
Dibromomethane	0.35	U	1.0	0.35	ug/L			02/05/20 14:43	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/05/20 14:43	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/05/20 14:43	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/05/20 14:43	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/05/20 14:43	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			02/05/20 14:43	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			02/05/20 14:43	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/05/20 14:43	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			02/05/20 14:43	1
2-Hexanone	2.0	U *	10	2.0	ug/L			02/05/20 14:43	1
Iodomethane	5.0	U	10	5.0	ug/L			02/05/20 14:43	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/05/20 14:43	1
4-Methyl-2-pentanone (MIBK)	2.1	U *	10	2.1	ug/L			02/05/20 14:43	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			02/05/20 14:43	1
Styrene	0.27	U	1.0	0.27	ug/L			02/05/20 14:43	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 14:43	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62	ug/L			02/05/20 14:43	1
Tetrachloroethylene	0.74	U	1.0	0.74	ug/L			02/05/20 14:43	1
Toluene	0.48	U	1.0	0.48	ug/L			02/05/20 14:43	1
trans-1,4-Dichloro-2-butene	0.51	U	2.0	0.51	ug/L			02/05/20 14:43	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			02/05/20 14:43	1
trans-1,3-Dichloropropene	0.42	U *	1.0	0.42	ug/L			02/05/20 14:43	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			02/05/20 14:43	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/05/20 14:43	1
Trichloroethene	0.48	U	1.0	0.48	ug/L			02/05/20 14:43	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/05/20 14:43	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/05/20 14:43	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/05/20 14:43	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			02/05/20 14:43	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			02/05/20 14:43	1

2/14/2020

02/05/20 14:43

02/05/20 14:43

02/05/20 14:43

02/05/20 14:43

80 - 120

80 - 122

73 - 131

80 - 120

95

100

113

101

3

6

8

10

11

12

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-605888/10

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 605888	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	7.0	U	10	7.0	ug/L			02/02/20 14:15	
Acrylonitrile	10	U	20	10	ug/L			02/02/20 14:15	
Benzene	0.43	U	1.0	0.43	ug/L			02/02/20 14:15	
Bromochloromethane	0.45	Ü	1.0	0.45	ug/L			02/02/20 14:15	
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/02/20 14:15	
Bromoform	0.43	U	1.0	0.43	ug/L			02/02/20 14:15	
Bromomethane	2.5	Ü	5.0	2.5	ug/L			02/02/20 14:15	
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/02/20 14:15	
Carbon disulfide	1.0	U	2.0		ug/L			02/02/20 14:15	
Carbon tetrachloride	0.33	U	1.0		ug/L			02/02/20 14:15	
Chlorobenzene	0.26	U	1.0		ug/L			02/02/20 14:15	
Chloroethane	2.5	U	5.0		ug/L			02/02/20 14:15	
Chloroform	0.50	Ü	1.0		ug/L			02/02/20 14:15	
Chloromethane	0.40		1.0		ug/L			02/02/20 14:15	
cis-1,2-Dichloroethene	0.41		1.0		ug/L			02/02/20 14:15	
cis-1,3-Dichloropropene	0.40		1.0		ug/L			02/02/20 14:15	
Dibromochloromethane	0.32		1.0		ug/L			02/02/20 14:15	
1,2-Dibromo-3-Chloropropane	1.1		5.0		ug/L			02/02/20 14:15	
1,2-Dibromoethane	0.44		1.0		ug/L			02/02/20 14:15	
Dibromomethane	0.35		1.0	0.35	-			02/02/20 14:15	
1,2-Dichlorobenzene	0.37		1.0	0.37	_			02/02/20 14:15	
1,4-Dichlorobenzene	0.46		1.0		ug/L			02/02/20 14:15	
1,1-Dichloroethane	0.38		1.0	0.38	-			02/02/20 14:15	
1,2-Dichloroethane	0.50		1.0	0.50	-			02/02/20 14:15	
1,1-Dichloroethene	0.36		1.0		ug/L			02/02/20 14:15	
1,2-Dichloropropane	0.67		1.0		ug/L			02/02/20 14:15	
1,3-Dichloropropane	0.07		1.0		ug/L ug/L			02/02/20 14:15	
	0.34				_				
Ethylbenzene			1.0		ug/L			02/02/20 14:15	
2-Hexanone	2.0		10		ug/L			02/02/20 14:15	
lodomethane	5.0		10		ug/L			02/02/20 14:15	
Methylene Chloride	2.5		5.0		ug/L			02/02/20 14:15	
4-Methyl-2-pentanone (MIBK)	2.1		10		ug/L			02/02/20 14:15	
Methyl tert-butyl ether	0.30		10		ug/L			02/02/20 14:15	
Styrene	0.27		1.0		ug/L			02/02/20 14:15	
1,1,1,2-Tetrachloroethane	0.37		1.0		ug/L			02/02/20 14:15	
1,1,2,2-Tetrachloroethane	0.62		1.0		ug/L			02/02/20 14:15	
Tetrachloroethylene	0.74		1.0		ug/L			02/02/20 14:15	
Toluene	0.48		1.0		ug/L			02/02/20 14:15	
rans-1,4-Dichloro-2-butene	0.51		2.0		ug/L			02/02/20 14:15	
rans-1,2-Dichloroethene	0.37		1.0		ug/L			02/02/20 14:15	
rans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			02/02/20 14:15	
1,1,1-Trichloroethane	0.37	U	1.0		ug/L			02/02/20 14:15	
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			02/02/20 14:15	
Trichloroethene	0.48	U	1.0	0.48	ug/L			02/02/20 14:15	
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			02/02/20 14:15	
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			02/02/20 14:15	
Vinyl acetate	0.81	U	2.0	0.81	ug/L			02/02/20 14:15	
Vinyl chloride	0.50	U	1.0		ug/L			02/02/20 14:15	

Eurofins TestAmerica, Savannah

Page 17 of 37

9

4

6

8

40

11

12

Client: Matrix Environmental Services, LLC

Lab Sample ID: MB 680-605888/10

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 680-179731-1

Matrix: Water

Analysis Batch: 605888

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Xylenes, Total 0.23 U 1.0 0.23 ug/L 02/02/20 14:15

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		80 - 120	02/02/20 14:15	1
Dibromofluoromethane (Surr)	101		80 - 122	02/02/20 14:15	1
1,2-Dichloroethane-d4 (Surr)	105		73 - 131	02/02/20 14:15	1
Toluene-d8 (Surr)	100		80 - 120	02/02/20 14:15	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 605888

Matrix: Water

Lab Sample ID: LCS 680-605888/4

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	250	237		ug/L		95	70 - 135
Acrylonitrile	500	529		ug/L		106	80 - 123
Benzene	50.0	51.7		ug/L		103	80 - 120
Bromochloromethane	50.0	50.8		ug/L		102	80 - 120
Bromodichloromethane	50.0	55.3		ug/L		111	80 - 120
Bromoform	50.0	53.2		ug/L		106	74 - 126
Bromomethane	50.1	52.1		ug/L		104	62 - 130
2-Butanone (MEK)	250	262		ug/L		105	80 - 131
Carbon disulfide	50.0	47.7		ug/L		95	80 - 120
Carbon tetrachloride	50.0	49.1		ug/L		98	76 - 123
Chlorobenzene	50.0	52.0		ug/L		104	80 - 120
Chloroethane	50.0	45.3		ug/L		90	66 ₋ 135
Chloroform	50.0	53.3		ug/L		107	80 - 120
Chloromethane	50.0	47.1		ug/L		94	69 - 131
cis-1,2-Dichloroethene	50.0	53.3		ug/L		107	80 - 120
cis-1,3-Dichloropropene	50.0	56.0		ug/L		112	80 - 120
Dibromochloromethane	50.0	55.9		ug/L		112	80 - 121
1,2-Dibromo-3-Chloropropane	50.0	49.1		ug/L		98	71 - 134
1,2-Dibromoethane	50.0	55.9		ug/L		112	80 - 120
Dibromomethane	50.0	53.6		ug/L		107	80 - 120
1,2-Dichlorobenzene	50.0	53.0		ug/L		106	80 - 120
1,4-Dichlorobenzene	50.0	52.6		ug/L		105	80 - 120
1,1-Dichloroethane	50.0	52.3		ug/L		105	80 - 120
1,2-Dichloroethane	50.0	54.7		ug/L		109	80 - 120
1,1-Dichloroethene	50.0	46.1		ug/L		92	76 - 120
1,2-Dichloropropane	50.0	54.6		ug/L		109	80 - 120
1,3-Dichloropropane	50.0	55.6		ug/L		111	80 - 120
Ethylbenzene	50.0	52.3		ug/L		105	80 - 120
2-Hexanone	250	278		ug/L		111	74 ₋ 127
lodomethane	50.0	44.4		ug/L		89	52 - 142
Methylene Chloride	50.0	50.3		ug/L		101	80 - 120
4-Methyl-2-pentanone (MIBK)	250	277		ug/L		111	76 ₋ 124
Methyl tert-butyl ether	50.0	51.3		ug/L		103	80 - 120
Styrene	50.0	54.5		ug/L		109	80 - 120
1,1,1,2-Tetrachloroethane	50.0	53.4		ug/L		107	80 - 121

Eurofins TestAmerica, Savannah

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-605888/4

Matrix: Water

Analysis Batch: 605888

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS L	.cs			%Rec.	
Analyte	Added	Result C	Qualifier Unit	D 9	%Rec	Limits	
1,1,2,2-Tetrachloroethane	50.0	53.5	ug/L		107	80 - 120	
Tetrachloroethylene	50.0	50.9	ug/L		102	80 - 121	
Toluene	50.0	53.8	ug/L		108	80 - 113	
trans-1,4-Dichloro-2-butene	50.0	55.8	ug/L		112	68 ₋ 125	
trans-1,2-Dichloroethene	50.0	49.7	ug/L		99	80 - 120	
trans-1,3-Dichloropropene	50.0	57.4	ug/L		115	80 - 120	
1,1,1-Trichloroethane	50.0	50.4	ug/L		101	80 - 120	
1,1,2-Trichloroethane	50.0	55.3	ug/L		111	80 - 120	
Trichloroethene	50.0	51.4	ug/L		103	80 - 120	
Trichlorofluoromethane	50.0	44.4	ug/L		89	60 - 141	
1,2,3-Trichloropropane	50.0	54.8	ug/L		110	80 - 123	
Vinyl acetate	100	117	ug/L		117	67 - 135	
Vinyl chloride	50.1	44.8	ug/L		89	71 - 128	
Xylenes, Total	100	106	ug/L		106	80 - 120	
Xylenes, Total	100	106	ug/L		106		80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	106		80 - 122
1,2-Dichloroethane-d4 (Surr)	108		73 - 131
Toluene-d8 (Surr)	107		80 - 120

Lab Sample ID: LCSD 680-605888/5

Matrix: Water

Analysis Batch: 605888

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	237		ug/L		95	70 - 135	0	30
Acrylonitrile	500	526		ug/L		105	80 - 123	1	20
Benzene	50.0	53.2		ug/L		106	80 - 120	3	20
Bromochloromethane	50.0	51.7		ug/L		103	80 - 120	2	20
Bromodichloromethane	50.0	55.9		ug/L		112	80 - 120	1	20
Bromoform	50.0	52.7		ug/L		105	74 - 126	1	20
Bromomethane	50.1	53.8		ug/L		107	62 - 130	3	20
2-Butanone (MEK)	250	265		ug/L		106	80 - 131	1	20
Carbon disulfide	50.0	49.3		ug/L		99	80 - 120	3	20
Carbon tetrachloride	50.0	50.4		ug/L		101	76 - 123	3	20
Chlorobenzene	50.0	52.6		ug/L		105	80 - 120	1	20
Chloroethane	50.0	46.6		ug/L		93	66 - 135	3	20
Chloroform	50.0	54.6		ug/L		109	80 - 120	2	20
Chloromethane	50.0	48.4		ug/L		97	69 - 131	3	30
cis-1,2-Dichloroethene	50.0	54.1		ug/L		108	80 - 120	1	20
cis-1,3-Dichloropropene	50.0	56.6		ug/L		113	80 - 120	1	20
Dibromochloromethane	50.0	56.4		ug/L		113	80 - 121	1	20
1,2-Dibromo-3-Chloropropane	50.0	50.3		ug/L		101	71 - 134	2	20
1,2-Dibromoethane	50.0	56.0		ug/L		112	80 - 120	0	20
Dibromomethane	50.0	54.4		ug/L		109	80 - 120	1	20
1,2-Dichlorobenzene	50.0	54.1		ug/L		108	80 - 120	2	20
1,4-Dichlorobenzene	50.0	54.0		ug/L		108	80 - 120	3	20

Eurofins TestAmerica, Savannah

Page 19 of 37

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-605888/5

Matrix: Water Analysis Batch: 605888 **Client Sample ID: Lab Control Sample Dup**

Prep Type: Total/NA

Job ID: 680-179731-1

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	50.0	53.5		ug/L		107	80 - 120	2	20
1,2-Dichloroethane	50.0	55.1		ug/L		110	80 - 120	1	50
1,1-Dichloroethene	50.0	47.4		ug/L		95	76 - 120	3	20
1,2-Dichloropropane	50.0	55.2		ug/L		110	80 - 120	1	20
1,3-Dichloropropane	50.0	55.8		ug/L		112	80 - 120	0	20
Ethylbenzene	50.0	53.0		ug/L		106	80 - 120	1	20
2-Hexanone	250	279		ug/L		112	74 - 127	0	20
Iodomethane	50.0	46.7		ug/L		93	52 - 142	5	30
Methylene Chloride	50.0	50.7		ug/L		101	80 - 120	1	20
4-Methyl-2-pentanone (MIBK)	250	278		ug/L		111	76 - 124	0	20
Methyl tert-butyl ether	50.0	51.7		ug/L		103	80 - 120	1	20
Styrene	50.0	55.2		ug/L		110	80 - 120	1	20
1,1,1,2-Tetrachloroethane	50.0	53.7		ug/L		107	80 - 121	1	20
1,1,2,2-Tetrachloroethane	50.0	53.1		ug/L		106	80 - 120	1	20
Tetrachloroethylene	50.0	52.3		ug/L		105	80 - 121	3	20
Toluene	50.0	54.9		ug/L		110	80 - 113	2	20
trans-1,4-Dichloro-2-butene	50.0	55.6		ug/L		111	68 - 125	0	30
trans-1,2-Dichloroethene	50.0	50.9		ug/L		102	80 - 120	2	20
trans-1,3-Dichloropropene	50.0	58.1		ug/L		116	80 - 120	1	30
1,1,1-Trichloroethane	50.0	51.4		ug/L		103	80 - 120	2	20
1,1,2-Trichloroethane	50.0	55.5		ug/L		111	80 - 120	0	20
Trichloroethene	50.0	52.9		ug/L		106	80 - 120	3	20
Trichlorofluoromethane	50.0	46.4		ug/L		93	60 - 141	5	20
1,2,3-Trichloropropane	50.0	54.3		ug/L		109	80 - 123	1	30
Vinyl acetate	100	118		ug/L		118	67 - 135	0	20
Vinyl chloride	50.1	45.8		ug/L		91	71 - 128	2	20
Xylenes, Total	100	107		ug/L		107	80 - 120	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	108		80 - 122
1,2-Dichloroethane-d4 (Surr)	108		73 - 131
Toluene-d8 (Surr)	110		80 - 120

Lab Sample ID: MB 680-606263/10

Matrix: Water

Analysis Batch: 606263

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			02/05/20 14:20	1
Acrylonitrile	10	U	20	10	ug/L			02/05/20 14:20	1
Benzene	0.43	U	1.0	0.43	ug/L			02/05/20 14:20	1
Bromochloromethane	0.45	U	1.0	0.45	ug/L			02/05/20 14:20	1
Bromodichloromethane	0.44	U	1.0	0.44	ug/L			02/05/20 14:20	1
Bromoform	0.43	U	1.0	0.43	ug/L			02/05/20 14:20	1
Bromomethane	2.5	U	5.0	2.5	ug/L			02/05/20 14:20	1
2-Butanone (MEK)	3.4	U	10	3.4	ug/L			02/05/20 14:20	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			02/05/20 14:20	1

Eurofins TestAmerica, Savannah

Page 20 of 37

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 680-606263/10

Matrix: Water

Xylenes, Total

Analysis Batch: 606263

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	0.33	U	1.0	0.33	ug/L			02/05/20 14:20	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			02/05/20 14:20	1
Chloroethane	2.5	U	5.0	2.5	ug/L			02/05/20 14:20	1
Chloroform	0.50	U	1.0	0.50	ug/L			02/05/20 14:20	1
Chloromethane	0.40	U	1.0	0.40	ug/L			02/05/20 14:20	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			02/05/20 14:20	1
cis-1,3-Dichloropropene	0.40	U	1.0	0.40	ug/L			02/05/20 14:20	1
Dibromochloromethane	0.32	U	1.0	0.32	ug/L			02/05/20 14:20	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			02/05/20 14:20	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			02/05/20 14:20	1
Dibromomethane	0.35	U	1.0	0.35	ug/L			02/05/20 14:20	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			02/05/20 14:20	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			02/05/20 14:20	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			02/05/20 14:20	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			02/05/20 14:20	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			02/05/20 14:20	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			02/05/20 14:20	1
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			02/05/20 14:20	1
Ethylbenzene	0.33		1.0		ug/L			02/05/20 14:20	1
2-Hexanone	2.0	U	10		ug/L			02/05/20 14:20	1
Iodomethane	5.0	U	10	5.0	ug/L			02/05/20 14:20	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			02/05/20 14:20	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10		ug/L			02/05/20 14:20	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			02/05/20 14:20	1
Styrene	0.27		1.0	0.27	ug/L			02/05/20 14:20	1
1,1,1,2-Tetrachloroethane	0.37	U	1.0		ug/L			02/05/20 14:20	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0		ug/L			02/05/20 14:20	1
Tetrachloroethylene	0.74		1.0		ug/L			02/05/20 14:20	1
Toluene	0.48	U	1.0	0.48	ug/L			02/05/20 14:20	1
trans-1,4-Dichloro-2-butene	0.51	U	2.0	0.51	ug/L			02/05/20 14:20	1
trans-1,2-Dichloroethene	0.37		1.0		ug/L			02/05/20 14:20	1
trans-1,3-Dichloropropene	0.42	U	1.0		ug/L			02/05/20 14:20	1
1,1,1-Trichloroethane	0.37	U	1.0		ug/L			02/05/20 14:20	1
1,1,2-Trichloroethane	0.33		1.0		ug/L			02/05/20 14:20	1
Trichloroethene	0.48	U	1.0		ug/L			02/05/20 14:20	1
Trichlorofluoromethane	0.42		1.0		ug/L			02/05/20 14:20	1
1,2,3-Trichloropropane	0.39		1.0		ug/L			02/05/20 14:20	1
Vinyl acetate	0.81		2.0		ug/L			02/05/20 14:20	1
Vinyl chloride	0.50		1.0		ug/L			02/05/20 14:20	1
		-							

0.23 U

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120		02/05/20 14:20	1
Dibromofluoromethane (Surr)	101		80 - 122		02/05/20 14:20	1
1,2-Dichloroethane-d4 (Surr)	111		73 - 131		02/05/20 14:20	1
Toluene-d8 (Surr)	101		80 - 120		02/05/20 14:20	1

1.0

0.23 ug/L

Eurofins TestAmerica, Savannah

02/05/20 14:20

Page 21 of 37

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-606263/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 606263						Trop Typor Total
•	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Acetone	250	269		ug/L	107	70 - 135
Acrylonitrile	500	602		ug/L	120	80 - 123
Benzene	50.0	53.6		ug/L	107	80 - 120
Bromochloromethane	50.0	50.9		ug/L	102	80 - 120
Bromodichloromethane	50.0	57.4		ug/L	115	80 - 120
Bromoform	50.0	52.5		ug/L	105	74 - 126
Bromomethane	50.1	47.3		ug/L	94	62 - 130
2-Butanone (MEK)	250	293		ug/L	117	80 - 131
Carbon disulfide	50.0	47.6		ug/L	95	80 - 120
Carbon tetrachloride	50.0	48.1		ug/L	96	76 - 123
Chlorobenzene	50.0	51.2		ug/L	102	80 - 120
Chloroethane	50.0	44.0		ug/L	88	66 - 135
Chloroform	50.0	54.9		ug/L	110	80 - 120
Chloromethane	50.0	45.5		ug/L	91	69 - 131
cis-1,2-Dichloroethene	50.0	55.2		ug/L	110	80 - 120
cis-1,3-Dichloropropene	50.0	58.4		ug/L	117	80 - 120
Dibromochloromethane	50.0	57.7		ug/L	115	80 - 121
1,2-Dibromo-3-Chloropropane	50.0	50.7		ug/L	101	71 - 134
1,2-Dibromoethane	50.0	58.0		ug/L	116	80 - 120
Dibromomethane	50.0	56.4		ug/L	113	80 - 120
1,2-Dichlorobenzene	50.0	52.6		ug/L	105	80 - 120
1,4-Dichlorobenzene	50.0	51.5		ug/L	103	80 - 120
1,1-Dichloroethane	50.0	54.8		ug/L	110	80 - 120
1,2-Dichloroethane	50.0	58.1		ug/L	116	80 - 120
1,1-Dichloroethene	50.0	45.3		ug/L	91	76 - 120
1,2-Dichloropropane	50.0	57.5		ug/L	115	80 - 120
1,3-Dichloropropane	50.0	59.3		ug/L	119	80 - 120
Ethylbenzene	50.0	52.1		ug/L	104	80 - 120
2-Hexanone	250	336	*	ug/L	134	74 - 127
Iodomethane	50.0	37.0		ug/L	74	52 - 142
Methylene Chloride	50.0	50.8		ug/L	102	80 - 120
4-Methyl-2-pentanone (MIBK)	250	330	*	ug/L	132	76 - 124
Methyl tert-butyl ether	50.0	54.3		ug/L	109	80 - 120
Styrene	50.0	54.2		ug/L	108	80 - 120
1,1,1,2-Tetrachloroethane	50.0	52.4		ug/L	105	80 - 121
1,1,2,2-Tetrachloroethane	50.0	56.4		ug/L	113	80 - 120
Tetrachloroethylene	50.0	50.0		ug/L	100	80 - 121
Toluene	50.0	55.0		ug/L	110	80 - 113
trans-1,4-Dichloro-2-butene	50.0	60.5		ug/L ug/L	121	68 ₋ 125
trans-1,2-Dichloroethene	50.0	50.0		ug/L ug/L	100	80 - 120
trans-1,3-Dichloropropene	50.0	61.0	*	ug/L	122	80 - 120
1,1,1-Trichloroethane	50.0	50.4			101	80 - 120 80 - 120
1,1,2-Trichloroethane				ug/L		
1,1,2-1 richioroethane Trichioroethene	50.0	59.3		ug/L	119	80 - 120 80 - 120
	50.0	50.0		ug/L	100	80 ₋ 120
Trichlorofluoromethane	50.0	41.7		ug/L	83	60 - 141
1,2,3-Trichloropropane	50.0	57.0		ug/L	114	80 ₋ 123
Vinyl acetate	100	128		ug/L	128	67 ₋ 135
Vinyl chloride	50.1	43.2		ug/L	86	71 - 128

Eurofins TestAmerica, Savannah

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-606263/4

Matrix: Water

Analysis Batch: 606263

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-179731-1

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Xylenes, Total 100 105 ug/L 105

80 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	106		80 - 122
1,2-Dichloroethane-d4 (Surr)	114		73 - 131
Toluene-d8 (Surr)	109		80 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 606263

Lab Sample ID: LCSD 680-606263/5

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	266		ug/L		106	70 - 135	1	30
Acrylonitrile	500	586		ug/L		117	80 - 123	3	20
Benzene	50.0	52.6		ug/L		105	80 - 120	2	20
Bromochloromethane	50.0	49.8		ug/L		100	80 - 120	2	20
Bromodichloromethane	50.0	56.1		ug/L		112	80 - 120	2	20
Bromoform	50.0	50.8		ug/L		102	74 - 126	3	20
Bromomethane	50.1	45.2		ug/L		90	62 - 130	5	20
2-Butanone (MEK)	250	285		ug/L		114	80 - 131	3	20
Carbon disulfide	50.0	47.3		ug/L		95	80 - 120	1	20
Carbon tetrachloride	50.0	48.8		ug/L		98	76 - 123	1	20
Chlorobenzene	50.0	50.6		ug/L		101	80 - 120	1	20
Chloroethane	50.0	42.9		ug/L		86	66 - 135	2	20
Chloroform	50.0	54.3		ug/L		109	80 - 120	1	20
Chloromethane	50.0	46.3		ug/L		92	69 - 131	2	30
cis-1,2-Dichloroethene	50.0	55.3		ug/L		111	80 - 120	0	20
cis-1,3-Dichloropropene	50.0	56.7		ug/L		113	80 - 120	3	20
Dibromochloromethane	50.0	55.5		ug/L		111	80 - 121	4	20
1,2-Dibromo-3-Chloropropane	50.0	52.5		ug/L		105	71 - 134	3	20
1,2-Dibromoethane	50.0	56.3		ug/L		113	80 - 120	3	20
Dibromomethane	50.0	54.3		ug/L		109	80 - 120	4	20
1,2-Dichlorobenzene	50.0	52.3		ug/L		105	80 - 120	0	20
1,4-Dichlorobenzene	50.0	51.7		ug/L		103	80 - 120	0	20
1,1-Dichloroethane	50.0	54.4		ug/L		109	80 - 120	1	20
1,2-Dichloroethane	50.0	56.6		ug/L		113	80 - 120	3	50
1,1-Dichloroethene	50.0	46.0		ug/L		92	76 - 120	1	20
1,2-Dichloropropane	50.0	56.2		ug/L		112	80 - 120	2	20
1,3-Dichloropropane	50.0	57.0		ug/L		114	80 - 120	4	20
Ethylbenzene	50.0	52.0		ug/L		104	80 - 120	0	20
2-Hexanone	250	327	*	ug/L		131	74 - 127	3	20
lodomethane	50.0	38.3		ug/L		77	52 - 142	4	30
Methylene Chloride	50.0	50.0		ug/L		100	80 - 120	1	20
4-Methyl-2-pentanone (MIBK)	250	321	*	ug/L		128	76 - 124	3	20
Methyl tert-butyl ether	50.0	52.6		ug/L		105	80 - 120	3	20
Styrene	50.0	53.6		ug/L		107	80 - 120	1	20
1,1,1,2-Tetrachloroethane	50.0	52.1		ug/L		104	80 - 121	0	20

Eurofins TestAmerica, Savannah

Job ID: 680-179731-1 Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-606263/5 **Matrix: Water**

Analysis Batch: 606263

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	50.0	55.2		ug/L		110	80 - 120	2	20
Tetrachloroethylene	50.0	49.3		ug/L		99	80 - 121	2	20
Toluene	50.0	54.1		ug/L		108	80 - 113	2	20
trans-1,4-Dichloro-2-butene	50.0	60.0		ug/L		120	68 - 125	1	30
trans-1,2-Dichloroethene	50.0	49.4		ug/L		99	80 - 120	1	20
trans-1,3-Dichloropropene	50.0	58.5		ug/L		117	80 - 120	4	30
1,1,1-Trichloroethane	50.0	50.4		ug/L		101	80 - 120	0	20
1,1,2-Trichloroethane	50.0	56.8		ug/L		114	80 - 120	4	20
Trichloroethene	50.0	49.5		ug/L		99	80 - 120	1	20
Trichlorofluoromethane	50.0	42.6		ug/L		85	60 - 141	2	20
1,2,3-Trichloropropane	50.0	55.3		ug/L		111	80 - 123	3	30
Vinyl acetate	100	124		ug/L		124	67 - 135	3	20
Vinyl chloride	50.1	43.1		ug/L		86	71 - 128	0	20
Xylenes, Total	100	106		ug/L		106	80 - 120	0	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	104		80 - 122
1,2-Dichloroethane-d4 (Surr)	111		73 - 131
Toluene-d8 (Surr)	107		80 - 120

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-606119/8

Matrix: Water

Analysis Batch: 606119

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	0.29	U	0.58	0.29	ug/L			02/04/20 13:33	1
Ethane	0.55	U	1.1	0.55	ug/L			02/04/20 13:33	1
Ethene	0.50	U	1.0	0.50	ug/L			02/04/20 13:33	1
Methane (TCD)	39	U	390	39	ug/L			02/04/20 13:33	1

Lab Sample ID: LCS 680-606119/3

Matrix: Water

Analysis Batch: 606119

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methane	154	155		ug/L		101	75 - 125	
Ethane	288	288		ug/L		100	75 - 125	
Ethene	269	271		ug/L		101	75 - 125	

Lab Sample ID: LCS 680-606119/6

Matrix: Water

Analysis Batch: 606119

Alialysis Dalcii, bub i is								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methane (TCD)	1920	1830		ug/L		95	75 - 125	

Eurofins TestAmerica, Savannah

Page 24 of 37

2/14/2020

Prep Type: Total/NA

Prep Type: Total/NA

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCSD 680-606119/4 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 606119

Spike	LCSD	LCSD				%Rec.		RPD	
Added	_		Unit	D	%Rec	Limits	RPD	Limit	
154	143		ug/L		93	75 - 125	8	30	
288	263		ug/L		91	75 - 125	9	30	
269	247		ug/L		92	75 - 125	9	30	
	154 288	Added Result 154 143 288 263	Added Result Qualifier 154 143 288 263	Added Result Qualifier Unit 154 143 ug/L 288 263 ug/L	Added Result Qualifier Unit D 154 143 ug/L ug/L 288 263 ug/L	Added Result Qualifier Unit D %Rec 154 143 ug/L 93 288 263 ug/L 91	Added Result Qualifier Unit D %Rec Limits 154 143 ug/L 93 75 - 125 288 263 ug/L 91 75 - 125	Added Result 143 Qualifier ug/L Unit ug/L D was 300 Rec was 300 Limits RPD was 300 RPD was 300 154 143 ug/L 93 75 - 125 8 288 263 ug/L 91 75 - 125 9	Added Result Qualifier Unit D %Rec Limits RPD Limit 154 143 ug/L 93 75 - 125 8 30 288 263 ug/L 91 75 - 125 9 30

Lab Sample ID: LCSD 680-606119/7 **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 606119

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane (TCD)	1920	1810		ug/L		94	75 - 125	1	30

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-605521/2 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 605521

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.023	U	0.050	0.023	mg/L			01/29/20 15:24	1
Nitrite as N	0.023	U	0.050	0.023	mg/L			01/29/20 15:24	1

Lab Sample ID: LCS 680-605521/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 605521

		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	 	0.999	0.957		mg/L		96	90 - 110	 	
Nitrite as N		0.997	1.03		mg/L		104	90 - 110		

Lab Sample ID: LCSD 680-605521/4 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605521

rinalyolo Zatom cocci	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Nitrate as N	0.999	0.959		mg/L	_	96	90 - 110	0	15	
Nitrite as N	0.997	1.03		mg/L		103	90 - 110	0	15	

Lab Sample ID: 680-179731-2 MS Client Sample ID: FTA-94-MW11 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605521

Analysis Batem. 000021	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrate as N	0.023	U	0.999	0.940		mg/L		94	80 - 120
Nitrite as N	0.023	U	0.997	0.916		mg/L		92	80 - 120

Eurofins TestAmerica, Savannah

Job ID: 680-179731-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 605661

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: 680-179731-2 MSD Client Sample ID: FTA-94-MW11

Matrix: Water

Prep Type: Total/NA Analysis Batch: 605521 Sample Sample Spike MSD MSD %Rec. **RPD**

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrate as N 0.023 U 0.999 0.951 95 80 - 120 15 mg/L 0.023 U 93 Nitrite as N 0.997 0.922 mg/L 80 - 120 15

Lab Sample ID: MB 680-605522/2

Matrix: Water

Analysis Batch: 605522

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac D Prepared Analyzed Sulfate 0.40 U 1.0 0.40 mg/L 01/29/20 15:14

Lab Sample ID: LCS 680-605522/3

Matrix: Water

Analysis Batch: 605522

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Sulfate 10.0 10.9 109 90 - 110 mg/L

Lab Sample ID: LCSD 680-605522/4

Matrix: Water

Analysis Batch: 605522

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier **RPD** Analyte Unit %Rec Limits Limit Sulfate 10.0 11 0 110 mg/L 90 - 110

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-605661/1-A

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA **Analysis Batch: 605945 Prep Batch: 605661** MR MR

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 17 U 50 17 01/30/20 14:56 01/31/20 14:56 Iron ug/L Manganese 1.0 U 10 1.0 ug/L 01/30/20 14:56 01/31/20 14:56

Lab Sample ID: LCS 680-605661/2-A **Matrix: Water**

Analysis Batch: 605945

LCS LCS Spike Added Result Qualifier Analyte Unit D

Limits %Rec 5010 4940 99 80 - 120 Iron ug/L Manganese 400 405 ug/L 101 80 - 120

Lab Sample ID: MB 680-605745/1-A

Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable Analysis Batch: 605945 Prep Batch: 605745

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 17 U 50 ug/L 01/31/20 09:36 01/31/20 19:14 Dissolved Iron 17 Dissolved Manganese 1.0 U 10 1.0 ug/L 01/31/20 09:36 01/31/20 19:14

Eurofins TestAmerica, Savannah

Spike

Added

MR MR

MB MB Result Qualifier

0 10 U

0.10 U

Result Qualifier

5010

400

Spike

Added

1.00

Spike

Added

2.00

RL

RL

0.20

0.25

LCS LCS

LCSD LCSD

5060

406

Result Qualifier

MDL Unit

0.10 mg/L

LCS LCS

0.937

Result Qualifier

MDL Unit

0.10 mg/L

LCS LCS

1.84

Result Qualifier

5120

412

Result Qualifier

Unit

ug/L

ug/L

Unit

ug/L

ug/L

Unit

mg/L

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-605745/2-A

Matrix: Water

Analysis Ratch: 605045

Analysis batch: 605945	
	Spike
Analyte	Added
Dissolved Iron	5010
Dissolved Manganese	400

Lab Sample ID: LCSD 680-605745/3-A

Matrix: Water

Analysis Batch: 605945

Analyte

Dissolved Iron Dissolved Manganese

Method: 350.1-1993 R2.0 - Nitrogen, Ammonia

Lab Sample ID: MB 680-607292/12

Matrix: Water

Analysis Batch: 607292

Analyte

Ammonia

Lab Sample ID: LCS 680-607292/11 **Matrix: Water**

Analysis Batch: 607292

Analyte

Ammonia Method: 351.2-1993 R2.0 - Nitrogen, Total Nitrogen

Lab Sample ID: MB 680-606539/10-A

Matrix: Water

Analyte

Analysis Batch: 606632

Nitrogen, Kjeldahl

Lab Sample ID: LCS 680-606539/11-A **Matrix: Water**

Analysis Batch: 606632

Analyte Nitrogen, Kjeldahl Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 605745

%Rec. %Rec Limits 80 - 120 102 103 80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 605745 %Rec. **RPD**

Limits **RPD** Limit D %Rec 101 80 - 120 20 102 80 - 120 20

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyzed

02/13/20 09:40

%Rec. Limits

%Rec 94 90 - 110

Prepared

Prepared

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 606539**

Analyzed

Dil Fac

Client Sample ID: Lab Control Sample

02/06/20 16:26 02/07/20 09:11

Prep Type: Total/NA **Prep Batch: 606539**

%Rec. Limits

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

GC/MS VOA

Analysis Batch: 605888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-1	FTA-94-MW03	Total/NA	Water	8260B	
680-179731-3	FTA-94-MW12	Total/NA	Water	8260B	
680-179731-5	FTA-94-MW15	Total/NA	Water	8260B	
MB 680-605888/10	Method Blank	Total/NA	Water	8260B	
LCS 680-605888/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-605888/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 606263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	8260B	
680-179731-4	FTA-94-MW13	Total/NA	Water	8260B	
680-179731-6	FTA-94-MW16	Total/NA	Water	8260B	
680-179731-7	DUP340	Total/NA	Water	8260B	
680-179731-8	TB547	Total/NA	Water	8260B	
MB 680-606263/10	Method Blank	Total/NA	Water	8260B	
LCS 680-606263/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-606263/5	Lab Control Sample Dup	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 606119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	RSK-175	
680-179731-7	DUP340	Total/NA	Water	RSK-175	
MB 680-606119/8	Method Blank	Total/NA	Water	RSK-175	
LCS 680-606119/3	Lab Control Sample	Total/NA	Water	RSK-175	
LCS 680-606119/6	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 680-606119/4	Lab Control Sample Dup	Total/NA	Water	RSK-175	
LCSD 680-606119/7	Lab Control Sample Dup	Total/NA	Water	RSK-175	

HPLC/IC

Analysis Batch: 605521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	9056A	
680-179731-7	DUP340	Total/NA	Water	9056A	
MB 680-605521/2	Method Blank	Total/NA	Water	9056A	
LCS 680-605521/3	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-605521/4	Lab Control Sample Dup	Total/NA	Water	9056A	
680-179731-2 MS	FTA-94-MW11	Total/NA	Water	9056A	
680-179731-2 MSD	FTA-94-MW11	Total/NA	Water	9056A	

Analysis Batch: 605522

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	9056A	
680-179731-7	DUP340	Total/NA	Water	9056A	
MB 680-605522/2	Method Blank	Total/NA	Water	9056A	
LCS 680-605522/3	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-605522/4	Lab Control Sample Dup	Total/NA	Water	9056A	

Eurofins TestAmerica, Savannah

Page 28 of 37

2

Job ID: 680-179731-1

e

4

6

Q

9

4

10

17

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Metals

Prep Batch: 605661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	3010A	
680-179731-7	DUP340	Total/NA	Water	3010A	
MB 680-605661/1-A	Method Blank	Total/NA	Water	3010A	
LCS 680-605661/2-A	Lab Control Sample	Total/NA	Water	3010A	

Filtration Batch: 605742

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Dissolved	Water	FILTRATION	
680-179731-7	DUP340	Dissolved	Water	FILTRATION	

Prep Batch: 605745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Dissolved	Water	3005A	605742
680-179731-7	DUP340	Dissolved	Water	3005A	605742
MB 680-605745/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-605745/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 680-605745/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	

Analysis Batch: 605945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Dissolved	Water	6010C	605745
680-179731-2	FTA-94-MW11	Total/NA	Water	6010C	605661
680-179731-7	DUP340	Dissolved	Water	6010C	605745
680-179731-7	DUP340	Total/NA	Water	6010C	605661
MB 680-605661/1-A	Method Blank	Total/NA	Water	6010C	605661
MB 680-605745/1-A	Method Blank	Total Recoverable	Water	6010C	605745
LCS 680-605661/2-A	Lab Control Sample	Total/NA	Water	6010C	605661
LCS 680-605745/2-A	Lab Control Sample	Total Recoverable	Water	6010C	605745
LCSD 680-605745/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010C	605745

General Chemistry

Prep Batch: 606539

Г	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
[680-179731-2	FTA-94-MW11	Total/NA	Water	Digestion	
- (680-179731-7	DUP340	Total/NA	Water	Digestion	
1	MB 680-606539/10-A	Method Blank	Total/NA	Water	Digestion	
	LCS 680-606539/11-A	Lab Control Sample	Total/NA	Water	Digestion	

Analysis Batch: 606632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	351.2-1993 R2.0	606539
680-179731-7	DUP340	Total/NA	Water	351.2-1993 R2.0	606539
MB 680-606539/10-	A Method Blank	Total/NA	Water	351.2-1993 R2.0	606539
LCS 680-606539/11	-A Lab Control Sample	Total/NA	Water	351.2-1993 R2.0	606539

Analysis Batch: 607292

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-179731-2	FTA-94-MW11	Total/NA	Water	350.1-1993 R2.0	
680-179731-7	DUP340	Total/NA	Water	350.1-1993 R2.0	
MB 680-607292/12	Method Blank	Total/NA	Water	350.1-1993 R2.0	

Eurofins TestAmerica, Savannah

2/14/2020

Page 29 of 37

_

Job ID: 680-179731-1

3

4

6

7

8

9

10

11

12

QC Association Summary

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

General Chemistry (Continued)

Analysis Batch: 607292 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-607292/11	Lab Control Sample	Total/NA	Water	350.1-1993 R2.0	

31-1

3

4

6

8

10

11

4.6

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW03

Date Collected: 01/27/20 10:06 Date Received: 01/29/20 09:00

Lab Sample ID: 680-179731-1

Matrix: Water

Batch Batch Dil Initial Final **Batch** Prepared Method Factor Number **Prep Type** Type Run Amount Amount or Analyzed Analyst Lab Total/NA 8260B 605888 02/02/20 15:48 Y1S TAL SAV Analysis 5 mL 5 mL Instrument ID: CMSC

Lab Sample ID: 680-179731-2 Client Sample ID: FTA-94-MW11

Date Collected: 01/28/20 11:56 Date Received: 01/29/20 09:00

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	8260B ID: CMSC		1	5 mL	5 mL	606263	02/05/20 15:53	UI	TAL SAV
Total/NA	Analysis Instrument	RSK-175 ID: CVGU		1	17 mL	17 mL	606119	02/04/20 18:03	MYD	TAL SAV
Total/NA	Analysis Instrument	9056A ID: CICH		1	5 mL	5 mL	605522	01/29/20 20:49	UI	TAL SAV
Total/NA	Analysis Instrument	9056A ID: CICL		1	5 mL	5 mL	605521	01/29/20 16:26	CS	TAL SAV
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	605742	01/31/20 09:34	AJR	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	605745	01/31/20 09:36	AJR	TAL SAV
Dissolved	Analysis Instrument	6010C ID: ICPE		1			605945	01/31/20 19:59	ВСВ	TAL SAV
Total/NA	Prep	3010A			50 mL	50 mL	605661	01/30/20 14:56	AJR	TAL SAV
Total/NA	Analysis Instrument	6010C ID: ICPE		1			605945	01/31/20 16:17	ВСВ	TAL SAV
Total/NA	Analysis Instrument	350.1-1993 R2.0 ID: KONELAB1		1	2 mL	2 mL	607292	02/13/20 09:49	AMH	TAL SAV
Total/NA	Prep	Digestion			20 mL	20 mL	606539	02/06/20 16:26	SM	TAL SAV
Total/NA	Analysis Instrument	351.2-1993 R2.0 ID: LACHAT3		1			606632	02/07/20 09:31	NVF	TAL SAV

Client Sample ID: FTA-94-MW12

Date Collected: 01/27/20 11:31

Date Received: 01/29/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	605888	02/02/20 16:11	Y1S	TAL SAV
	Instrumon	+ ID. CMSC								

Client Sample ID: FTA-94-MW13

Date Collected: 01/28/20 10:16

Date Received: 01/29/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	606263	02/05/20 16:17	UI	TAL SAV
	Instrument	ID: CMSC								

Eurofins TestAmerica, Savannah

Lab Sample ID: 680-179731-3

Lab Sample ID: 680-179731-4

Matrix: Water

Matrix: Water

Page 31 of 37

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Client Sample ID: FTA-94-MW15

Date Collected: 01/27/20 13:36 Date Received: 01/29/20 09:00 Lab Sample ID: 680-179731-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	605888	02/02/20 16:34	Y1S	TAL SAV
	Instrument	ID: CMSC								

Client Sample ID: FTA-94-MW16 Lab Sample ID: 680-179731-6

Date Collected: 01/27/20 14:51 Date Received: 01/29/20 09:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	606263	02/05/20 16:40	UI	TAL SAV
	Instrumer	t ID: CMSC								

Lab Sample ID: 680-179731-7 Client Sample ID: DUP340

Date Collected: 01/28/20 00:00 **Matrix: Water**

Date Received: 01/29/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	606263	02/05/20 17:03	UI	TAL SAV
	Instrument	t ID: CMSC								
Total/NA	Analysis	RSK-175		1	17 mL	17 mL	606119	02/04/20 18:16	MYD	TAL SAV
	Instrument	t ID: CVGU								
Total/NA	Analysis	9056A		1	5 mL	5 mL	605522	01/29/20 21:02	UI	TAL SAV
	Instrument	t ID: CICH								
Total/NA	Analysis	9056A		1	5 mL	5 mL	605521	01/29/20 18:01	CS	TAL SAV
	Instrument	t ID: CICL								
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	605742	01/31/20 09:34	AJR	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	605745	01/31/20 09:36	AJR	TAL SAV
Dissolved	Analysis	6010C		1			605945	01/31/20 20:14	BCB	TAL SAV
	Instrument	t ID: ICPE								
Total/NA	Prep	3010A			50 mL	50 mL	605661	01/30/20 14:56	AJR	TAL SAV
Total/NA	Analysis	6010C		1			605945	01/31/20 16:22	BCB	TAL SAV
	Instrument	t ID: ICPE								
Total/NA	Analysis	350.1-1993 R2.0		1	2 mL	2 mL	607292	02/13/20 09:49	AMH	TAL SAV
	Instrument	t ID: KONELAB1								
Total/NA	Prep	Digestion			20 mL	20 mL	606539	02/06/20 16:26	SM	TAL SAV
Total/NA	Analysis	351.2-1993 R2.0		1			606632	02/07/20 09:27	NVF	TAL SAV
	Instrument	t ID: LACHAT3								

Client Sample ID: TB547 Lab Sample ID: 680-179731-8

Date Received: 01/29/20 09:00

Date Collected: 01/28/20 13:30 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	606263	02/05/20 14:43	UI	TAL SAV
	Instrumer	nt ID: CMSC								

Eurofins TestAmerica, Savannah

Page 32 of 37

Lab Chronicle

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-179731-1

Accreditation/Certification Summary

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Job ID: 680-179731-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-20

Method Summary

Client: Matrix Environmental Services, LLC

Project/Site: Parcel 94(7), Chem Laundry/Motor Pool

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
RSK-175	Dissolved Gases (GC)	RSK	TAL SAV
9056A	Anions, Ion Chromatography	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
350.1-1993 R2.0	Nitrogen, Ammonia	MCAWW	TAL SAV
351.2-1993 R2.0	Nitrogen, Total Nitrogen	MCAWW	TAL SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SAV
3010A	Preparation, Total Metals	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV
Digestion	Digestion, Hot Block	MCAWW	TAL SAV
FILTRATION	Sample Filtration	None	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-179731-1

3

4

5

7

Ŏ

10

44

11

12

Station Type = MW = Monitoring Well, BH = Bore Hole, SD = Sediment, SW = Surface Water, SS = Surface Soil, SU = Sump, WS = Waste Solid/Soil, WW = Waste Water White Copy = Lab COC, Yellow COC = Field Copy, Pink COC = Data Mgmt COMMENTS: Page 36 of 37

2-40 mL vials, HCL 2W8260 - VOC 1-125 mL poly, none Sulfate × × SW9056 Nitrate, Nitrite, 1-250 mL poly, H2504 × × 4500-NH3F, 4500NorgC 1 - 250mL poly, None - Dissolved (lab filter) × × Analysis SW6010B Metals, Fe, Mn I - 250mL poly, HNO3 of IstoT -× 5970 SW6010B Metals, Fe, Mn 0 3-40mL vials, HCI × BSK-TJS-W'E'E COC Number Page Cooler ID 3-40 mL vials, HCL × × × × 2W8260 - VOC 00:01 11:56 13:36 13:30 11:31 10:16 NA Sample Time 000 06/12/1 28/80 28/20 1/27 20 127/20 128/20 08/86/1 27 Date Collected Method ВР ВР ВР ВР ВР ВР ВР 9 Matrix Water Water Water Water Water Water Water Water Station Code MM MW MM N Z S N N M WQ Project Parcel 94(7), Chem Laundry/Motor Pool QC Code SS SS NS NS NS NS FD TB Lab Contact Jon Lawhon; Amy Ragnaldsen Station ID FTA-94-MW03 FTA-94-MW12 FTA-94-MW15 FTA-94-MW16 FTA-94-MW11 FTA-94-MW13 Task # 19.094.20-02.1 MES Phone 801-699-1246 MES Contact Betty Van Pelt Laboratory TestAmerica **DUP340** TB547 Lab contract: LTM - ChemLaundry TM - ChemLaundry LTM - ChemLaundry Samplers Signature SWMU

MATRIX ENVIRONMENTAL SERVICES CHAIN OF CUSTODY RECORD

Double the number of bottles for MS/MSD

Relinquished by (Signature):

Relinquished by (Signature):

Date/Time: 128 20 14:00

Date/Time:

Received by (Signature): Fed EX

QC Code: NS = Investigative Sample, FD = Field Duplicate, MS/MSD = Matrix Spike/Matrix Spike Duplicate, EB = Equipment Blank, TB = Trip Blank, WQ = Water Quality, WS = Source Water

NOTES:

Sampling Method: G = Grab, BP = bladder pump, PDB = PDB bag

Received by (Signature)

01-29-2020 0907

Client: Matrix Environmental Services, LLC

Job Number: 680-179731-1

Login Number: 179731

List Number: 1

Creator: Banda, Christy S

List Source: Eurofins TestAmerica, Savannah

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX D

Historical Analytical Data (1998-2010) for Detected VOCs in Groundwater Compared to MCLs

			FTA-94-MW01 (Residuum)												
VOCs (µg/L)	MCL	11/16/98	12/1/00	4/4/02	3/23/04	2/8/05	12/15/05	6/19/06	12/11/06	6/18/07	12/11/07	6/24/08	12/8/08	12/22/09	12/14/10
1,1,1-Trichloroethane	200	< 1	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 1	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 10 (R)	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Acetone	-	< 10 (R)	< 20 (R)	NA	< 10	< 10	10 U^ (UB)	< 10	< 10	< 10 (UJC)	< 10	< 10 (UJC)	< 10	< 10	< 10
Benzene	5	< 1	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 1	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1	< 1	< 1	0.26 J
Chlorobenzene	100	3.4	16	< 1	< 1	< 1	< 1	0.21 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 1	< 5	0.22 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	6.9	21	2.8	1	< 1	0.25 J	< 1	0.29 J	< 1	< 1	< 1	< 1	0.21 J	< 1
Methylene Chloride	-	< 1 (UJ)	< 5	0.72 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 1	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	0.97 J (J)	4.6 J (J)	0.6 J	0.26 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	25	53	18	11	2.8	3.9	1.1	4	0.78 J	0.95 J	2.3	1.4	4.3	1.3
Vinyl Chloride	2	0.92 J (J)	14	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

						I	TA-94-MW0	2 (Residuum)				
VOCs (µg/L)	MCL	11/29/00	4/6/04	2/9/05	12/14/05	6/20/06	12/11/06	6/19/07	12/11/07	6/23/08	12/8/08	12/15/09	12/16/10
1,1,1-Trichloroethane	200	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	2.6 J	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Benzene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

Appendix D Page 1 of 8

							FTA-94	MW03 (Res	iduum)					
VOCs (µg/L)	MCL	11/29/00	4/2/02	3/24/04	2/11/05	12/13/05	6/20/06	12/11/06	6/18/07	12/10/07	6/25/08	12/9/08	12/22/09	12/15/10
1,1,1-Trichloroethane	200	< 5	NA	0.53 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	NA	< 10	< 10	3.4 J	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	0.45 J	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1 (UJC)	< 1.0	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	0.22 J	< 1	< 1	< 1	< 1	< 1	0.22 J	< 1	0.28 J	< 1	0.31 J	0.26 J
Methylene Chloride	-	< 5	0.23 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	2.5 J (J)	1.5	1	0.76 J	0.8 J	1.2	0.73 J	1.1	1.3	1.1	0.9 J	1.1	1.1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

						J	TA-94-MW0	4 (Residuum)				
VOCs (µg/L)	MCL	12/4/00	3/22/04	2/11/05	12/14/05	6/21/06	12/12/06	6/19/07	12/10/07	6/25/08	12/9/08	12/14/09	12/15/10
1,1,1-Trichloroethane	200	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	0.36 J	< 1	0.35 J	< 1	0.48 J (JC)	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	0.21 J	0.51 J	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	< 1	< 1	0.24 J	< 1	< 1	0.35 J	4.1	0.24 J	< 1	< 1	0.33 J
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

Appendix D Page 2 of 8

						I	TA-94-MW	05 (Residuum)					
VOCs (µg/L)	MCL	11/30/00	3/22/04	2/10/05	12/19/05	6/20/06	12/12/06	6/18/07	12/10/07	6/25/08	12/9/08	12/22/09	12/15/10
1,1,1-Trichloroethane	200	< 5	0.61 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	0.21 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	3.1	2.3	1.3	2.5	1.2	2.2	2.1	2.5	0.73 J	0.77 J	0.46 J
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

							FTA-94	-MW06 (Bed	rock)					
VOCs (µg/L)	MCL	5/30/01	3/27/02	3/25/04	2/11/05	12/14/05	6/21/06	12/12/06	6/19/07	12/10/07	6/24/08	12/9/08	12/14/09	12/15/10
1,1,1-Trichloroethane	200	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	0.54 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Acetone	-	< 20	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	1.9 J (J)	0.31 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	0.52 J	0.4 J	< 1	0.34 J	0.2 J	< 1	< 1	< 1	0.37 J	< 1	< 1	< 1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

Appendix D Page 3 of 8

							FTA-94	MW07 (Res	iduum)					
VOCs (µg/L)	MCL	12/4/00	4/9/02	3/30/04	2/10/05	12/14/05	6/21/06	12/12/06	6/20/07	12/11/07	6/24/08	12/9/08	12/14/09	12/15/10
1,1,1-Trichloroethane	200	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
2-Butanone (MEK)	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	Dry	< 10	Dry
Acetone	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	17 (JC)	6.4 J	< 10 (UJC)	Dry	< 10	Dry
Benzene	5	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	0.28 J	Dry	< 1	Dry
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	Dry	< 2	Dry
Toluene	1000	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	Dry
Trichloroethene	5	1.5 J (J)	0.87 J	< 1	0.46 J	0.86 J	< 1	0.4 J	< 1	0.47 J	< 1	Dry	0.23 J	Dry
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	Dry	< 0.8	Dry

						I	TA-94-MW0	(Residuum))				
VOCs (µg/L)	MCL	12/4/00	4/9/02	3/22/04	2/9/05	12/15/05	6/20/2006	12/12/06	12/11/07	6/23/08	12/8/08	12/22/09	12/16/10
1,1,1-Trichloroethane	200	< 5	NA	0.22 J	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	Dry	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	Dry	< 10 (UJC)	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	NA	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	0.37 J	< 2	< 2	< 2	< 2	< 2	Dry	< 2	< 2	< 2	< 2
Toluene	1000	< 5	NA	< 1	< 1	< 1	< 1	< 1	Dry	< 1	0.32 J	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 1	< 1	< 1	< 1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	Dry	< 0.8	< 0.8	< 0.8	< 0.8

Appendix D
Page 4 of 8

						I	TA-94-MW1	0 (Residuum)				
VOCs (µg/L)	MCL	11/30/00	4/8/02	2/14/05	12/14/05	6/20/06	12/12/06	6/19/07	12/11/07	6/23/08	12/8/08	12/22/09	12/16/10
1,1,1-Trichloroethane	200	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 20 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Benzene	5	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	0.3 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

							FTA-94-MW	11 (Bedrock)					
VOCs (µg/L)	MCL	12/18/00	3/23/04	2/8/05	12/15/05	6/19/06	12/11/06	6/18/07	12/13/07	6/24/08	12/8/08	12/22/09	12/14/10
1,1,1-Trichloroethane	200	< 5	0.39 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.24 J
2-Butanone (MEK)	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Acetone	-	< 20 (R)	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	6.4 J (JC)	< 10	< 10	< 10
Benzene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	0.33 J	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	100	300	10	4.1	25	31	11	< 1	16	< 1	2.4	< 1	12
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	37	13	6.2	12	19	9	< 1	5.4	< 1	6.9	< 1	4.4
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	< 1	0.21 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	8.3	2	0.76 J	1	1.6	1.1	< 1	1.2	< 1	0.61 J	< 1	0.62 J
Trichloroethene	5	75	34	16	18	41	16	1.1	6	1.2	5.2	0.98 J	3.4
Vinyl Chloride	2	25	1.4	0.52 J	2.4	8.3	9.7	< 1	13	< 0.8	2	< 0.8	16

Appendix D Page 5 of 8

						FT	A-94-MW12	(Deep Bedroc	k)				
VOCs (µg/L)	MCL	5/24/01	3/25/04	2/14/05	12/13/05	6/20/06	12/11/06	6/18/07	12/12/07	6/25/08	12/9/08	12/22/09	12/15/10
1,1,1-Trichloroethane	200	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 20	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	14 J (J)	4.6 J	< 10	6.8 J	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 5	< 1	< 1	< 1	0.7 J	< 1	< 1 (UJC)	< 1	0.35 J (JC)	< 1	< 1	0.38 J
Chlorobenzene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 5	< 1	< 1	0.71 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 5	< 1	< 1	0.74 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	2	< 5	< 1	< 1	< 1	< 1	0.28 J	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

							FTA-94-N	IW13 (Deep	Bedrock)					
VOCs (µg/L)	MCL	7/18/01	10/15/01	4/3/02	3/23/04	2/8/05	6/19/06	12/13/06	6/18/07	12/12/07	6/24/08	12/8/08	12/15/09	12/14/10
1,1,1-Trichloroethane	200	< 1	< 1 (nv)	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 10 (R)	0.86 J (nv)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10	< 10
Acetone	-	< 10 (R)	3 JB (nv)	NA	< 10	< 10	7.8 J	< 10	< 10 (UJC)	< 10	6.9 J (JC)	< 10 (UJC)	< 10	< 10
Benzene	5	< 1	< 1 (nv)	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 1 (UJ)	< 1 (nv)	0.32 J	< 1	< 1	0.26 J	0.38 J	2 (JC)	< 1	< 1	< 1	< 1	0.26 J
Chlorobenzene	100	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	0.6 J (J)	0.46 J (nv)	0.62 J	0.72 J	0.22 J	0.83 J	< 1	< 1	1.3	1	0.93 J	0.88 J	0.53 J
Methylene Chloride	-	< 2	< 2 (nv)	0.31 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 1	< 1 (nv)	NA	< 1	0.43 J	< 1	< 1	< 1	< 1	< 1	0.31 J	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 1	< 1 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	7	4.8 (nv)	5.5	10	2	1 J	0.34 J	0.26 J	< 1	0.28 J	0.29 J	0.35 J	0.24 J
Vinyl Chloride	2	< 1	< 2 (nv)	< 1	< 1	< 1	< 1	< 1	< 1	0.37 J	< 0.8	< 0.8	0.25 J	< 0.8

Appendix D Page 6 of 8

							FTA-94	-MW14 (Bed	lrock)					
VOCs (µg/L)	MCL	7/24/01	4/5/02	3/30/04	2/9/05	12/19/05	6/20/06	12/13/06	6/18/07	12/12/07	6/23/08	12/8/08	12/22/09	12/16/10
1,1,1-Trichloroethane	200	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 10 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 10 (R)	NA	9 J	< 10	< 10	< 10	< 10	5 J (JC)	< 10	8.1 J (JC)	< 10	< 10	< 10
Benzene	5	1.7	NA	3.9	0.2 J	2.2	4.7	2.9	3.3	3.1	3.7	3	2.2	2.3
Carbon Disulfide	-	< 1	< 1	< 1	< 1	< 1	5.2	11	13 (JC)	11	16	11	5.9	5.3
Chlorobenzene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 1	NA	< 1	0.73 J	0.51 J	0.34 J	< 1	< 1	< 1	0.44 J	0.26 J	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	0.92 J (J)	0.92 J	0.64 J	2.6	1.1	0.42 J	0.28 J	0.26 J	< 1	< 1	< 1	0.28 J	0.21 J
Vinyl Chloride	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.36 J	< 0.8	0.22 J	0.2 J	< 0.8

	FTA-94-MW15 (Deep Bedrock)													
VOCs (µg/L)	MCL	7/20/01	4/2/02	3/23/04	2/10/05	12/19/05	6/21/06	12/13/06	6/20/07	12/12/07	6/25/08	12/9/08	12/14/09	12/14/10
1,1,1-Trichloroethane	200	< 1	NA	0.35 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 10 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 10 (R)	NA	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 1 (UJ)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1	< 1
Chlorobenzene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	0.28 J (J)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 2	0.86 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl Chloride	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

Appendix D Page 7 of 8

-		FTA-94-MW16 (Bedrock)											
VOCs (µg/L)	MCL	7/19/01	3/25/04	2/10/05	12/20/05	6/21/06	12/13/06	6/20/07	12/12/07	6/25/08	12/9/08	12/14/09	12/14/10
1,1,1-Trichloroethane	200	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Butanone (MEK)	-	< 10 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acetone	-	< 10 (R)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 (UJC)	< 10	< 10
Benzene	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Carbon Disulfide	-	< 1 (UJ)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1 (UJC)	< 1	< 1	< 1
Chlorobenzene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	80	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene Chloride	-	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Toluene	1000	< 1	< 1	0.35 J	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1 U^ (UB)
trans-1,2-Dichloroethene	100	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.27 J
Vinyl Chloride	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.8	< 0.8	< 0.8	< 0.8

Notes:

- Indicates no established MCL
- < = Indicates the analyte was not detected at the reported quantitation limit shown.

 $\mu g/L = micrograms per liter$

VOCs = Volatile Organic Compounds

Lab Flag

- J = Estimated detection. Concentration is between the method detection limit and the practical quantitation limit.
- U = Analyte is not detected above the RL.
- ^ = Lab flag updated by MES data reviewer.

Validation Qualifiers (delineated with parenthesis):

- (nv) = Not validated
- (J) = The analyte was positively identified; the reported value is the estimated concentration of the constituent detected in the sample.
- UJ = Analyte was analyzed for, but was not detected. The reported quantitation limit is estimated.
- U = Result was qualified as not detected above the level of the reporting limit or reported sample quantitation limit.

Validation Sub-qualifier:

- B = Result was qualified based on method blank or trip blank contamination.
- C = Continuing calibration was outside method-specific control limits.

Samples collected from 2000 through 2002 by IT Corporation (IT), data from IT's Remedial Investigation (IT, 2002).

Samples collected from 2004 through 2010 by Matrix Environmental Services, LLC (MES).

Because residuum well FTA-94-MW08 has been dry since the December 2005 sampling event, and was sampled during only two sampling rounds in February 2001 and February 2005, this well was not included in this table. Groundwater from well FTA-94-MW08 was non-detect for VOCs in February 2001 and February 2005 (MES, 2012).

Result > MCL

Appendix D Page 8 of 8